
RESEARCH Open Access

Controlling emerging zoonoses at the
animal-human interface
Riley O. Mummah1,2 , Nicole A. Hoff2, Anne W. Rimoin2 and James O. Lloyd-Smith1,3*

Abstract

Background: For many emerging or re-emerging pathogens, cases in humans arise from a mixture of
introductions (via zoonotic spillover from animal reservoirs or geographic spillover from endemic regions) and
secondary human-to-human transmission. Interventions aiming to reduce incidence of these infections can be
focused on preventing spillover or reducing human-to-human transmission, or sometimes both at once, and
typically are governed by resource constraints that require policymakers to make choices. Despite increasing
emphasis on using mathematical models to inform disease control policies, little attention has been paid to
guiding rational disease control at the animal-human interface.

Methods: We introduce a modeling framework to analyze the impacts of different disease control policies, focusing
on pathogens exhibiting subcritical transmission among humans (i.e. pathogens that cannot establish sustained
human-to-human transmission). We quantify the relative effectiveness of measures to reduce spillover (e.g. reducing
contact with animal hosts), human-to-human transmission (e.g. case isolation), or both at once (e.g. vaccination),
across a range of epidemiological contexts.

Results: We provide guidelines for choosing which mode of control to prioritize in different epidemiological
scenarios and considering different levels of resource and relative costs. We contextualize our analysis with current
zoonotic pathogens and other subcritical pathogens, such as post-elimination measles, and control policies that
have been applied.

Conclusions: Our work provides a model-based, theoretical foundation to understand and guide policy for
subcritical zoonoses, integrating across disciplinary and species boundaries in a manner consistent with One Health
principles.

Keywords: Subcritical zoonoses, Stuttering zoonoses, Epidemiological control, Emerging infectious diseases, Cross-
species spillover transmission, Human-to-human transmission, Infectious disease dynamics

Background
Zoonotic pathogens are a major threat to global
health, both through their on-going contributions to
disease burden and their potential contributions to
the emergence of novel pandemic pathogens [1]. Zoo-
notic spillover is defined as transmission of a

pathogen from an animal host to a susceptible human
and is the source of diseases from monkeypox to
plague to leishmaniasis. Risk of zoonotic spillover is
driven by many ecological, epidemiological, and be-
havioral factors across scales [2–4]. The combination
of animal ecology, human behavior, and environmen-
tal conditions can lead to cross-species transmission
and, thus, requires a OneHealth perspective to evalu-
ate and respond to outbreaks of disease.
Beyond the complexity of the zoonotic spillover

process, zoonotic pathogens differ greatly with respect
to their efficiency of human-to-human transmission

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: jlloydsmith@ucla.edu
1Department of Ecology and Evolutionary Biology, University of California,
610 Charles E Young Dr S, Los Angeles, CA 90095, USA
3Fogarty International Center, National Institutes of Health, Bethesda, MD
20892, USA
Full list of author information is available at the end of the article

One Health OutlookMummah et al. One Health Outlook            (2020) 2:17 
https://doi.org/10.1186/s42522-020-00024-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s42522-020-00024-5&domain=pdf
http://orcid.org/0000-0002-4542-3483
http://creativecommons.org/licenses/by/4.0/
mailto:jlloydsmith@ucla.edu


[5, 6]. Transmissibility between humans is described
by the reproductive number, R0, which is defined as
the average number of secondary cases caused by a
single infected individual in an entirely susceptible
population [7]. Some zoonotic pathogens face pre-
existing immunity in the population, and are gov-
erned by the effective reproductive number, Reff,
which is the average number of secondary cases in a
population with both susceptible and immune individ-
uals [8–10]. For simplicity, we will use R throughout
this study to refer to R0 or Reff, in either case repre-
senting the efficiency of human-to-human transmis-
sion before further control measures are considered.
It is useful to classify zoonoses by their transmissibility

among humans, as captured by their R value [6]. For
pathogens with R = 0, like West Nile virus or rabies
virus, transmission only occurs through spillover, and
the pathogen is unable to transmit between humans.
When R is between 0 and 1, the pathogen is subcritical
and causes self-limiting outbreaks, as for monkeypox
virus, Nipah virus, or some avian influenza viruses.
Supercritical pathogens with R > 1, such as pandemic in-
fluenza or Ebola virus, can cause epidemics or pan-
demics in the human population.
Subcritical zoonoses have been understudied by infec-

tious disease modelers, likely because they do not align
with dominant modeling frameworks, they require inte-
gration of animal and human dynamics, and they pres-
ently lack pandemic potential [6]. Modeling effort on
these systems has been particularly sparse for questions
of disease control and its economic components, and
the interplay between spillover and human-to-human
transmission in driving the epidemiology of subcritical
pathogens. Some improvements have been made in the
last decade, especially in methods for estimating R for
subcritical pathogens [11–15], but there is still a lack of
theory to guide control efforts [16]. This paper aims to
address this gap. We note that our findings extend dir-
ectly to non-zoonotic pathogens such as post-
elimination measles, where R < 1 due to herd immunity,
and geographic importation plays the role of spillover.
Our findings also relate to the on-going COVID-19 pan-
demic caused by SARS-CoV-2, where R < 1 in some set-
tings due to social distancing, contact tracing,
quarantine and isolation, and other measures, and again
geographic importation acts like spillover to introduce
new cases. Our work also applies equally to pathogens
that transmit directly or via arthropod vectors.
Control measures for subcritical zoonoses can be clas-

sified into three functional groups according to the
modes of transmission they aim to reduce: prevention of
spillover, reduction of human-to-human transmission,
and control of both spillover and human-to-human
transmission jointly (Table 1). Because subcritical

pathogens cannot cause epidemics and every outbreak is
triggered by a spillover event, public health policy may
naturally focus on spillover prevention. However as R
rises toward 1, an increasing proportion of cases are
caused by human-to-human transmission (Fig. 1). This
leads to open questions about how to target control
measures. Should control be targeted at animal-to-
human transmission, human-to-human transmission, or
both? Furthermore, for pathogens that spill over infre-
quently, implementing controls that focus on human-to-
human transmission when there are no active outbreaks
does not seem cost effective. Would a reactive strategy
which switches from preventing zoonotic spillover to re-
ducing human-to-human transmission be more
effective?
This decision space gets more complicated when eco-

nomic costs of control are considered, especially because
measures to reduce different types of transmission may
differ in cost. Similarly, there are often known host or
environmental factors that influence spillover risk. Epi-
demiological risk factor studies can define these factors
so high-risk groups can be identified. For example, indi-
viduals in contact with dromedary camels and hunting
or handling bushmeat are at higher risk for transmission
of Middle East Respiratory Syndrome (MERS) corona-
virus and simian retroviruses, respectively [63, 64]. Can
targeted reduction of spillover in these high-risk groups
be an effective control measure for subcritical patho-
gens? This study presents a general theory to build intu-
ition and give evidence-based guidelines for effective
control of subcritical zoonoses (or other subcritical path-
ogens). Our framework reveals general principles to aid
policymakers faced with difficult decisions and resource
constraints and can be adapted to specific pathogens
and settings to guide concrete decisions and support al-
location of finite resources.

Methods
Total incidence of subcritical zoonoses
For a subcritical zoonosis, the total incidence of infec-
tion in the human population arises from a mixture of
primary and secondary cases. We assume that zoonotic
spillover events (primary cases) occur at some character-
istic total rate λz in a population of interest, e.g. λz might
represent 100 spillover events per year in a given admin-
istrative region. Each human case is then capable of
transmitting the infection to cause secondary cases, with
the reproductive number R denoting the expected num-
ber of secondary cases per infected human.
It is possible to model the stochastic dynamics of

transmission in the human population using a branching
process [65–67] or similar formulation. For the present
analysis, it is sufficient to focus on the expected dynam-
ics of these models. The first generation of transmission
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Table 1 A collection of systems which have implemented control measures targeted at spillover animal-to-human transmission,
human-to-human transmission, or both and their associated reproductive numbers

Pathogen R Transmission
mode targeted

Intervention References

Subcritical pathogens

Avian influenza (H7N9) 0.06 to 0.35
[17]

Spillover Reductions in poultry exports
Market disinfection
Closure of live poultry trading activities

[17–21]

Human-to-human Handwashing
Social distancing

Both Poultry trade regulations
Health education campaigns

Avian influenza (H5N1) 0.05 to 0.2
[22]

Spillover Culling poultry [23, 24]

Human-to-human Active case surveillance

Both Vaccination

Nipah 0.48
[25]

Spillover Avoid consumption of palm sap
Covers for palm sap collection vessels

[26]

Human-to-human Nosocomial interventions

Monkeypox ~ 0.3 in
1980s
[11]

Spillover Reduce contact with reservoir animals [27–30]

Human-to-human Improved diagnostics for early case detection
Vaccinating healthcare workers

Both Smallpox vaccination
Community-based interventions

MERS 0.45
[12]

Spillover Reduction of human contact with camels
Camel vaccination

[12, 31–33]

Human-to-human Nosocomial precautions
Case isolation

Lassa 0.73
[34]

Spillover Rodent control [34–38]

Human-to-human Nosocomial precautions (PPE)
Contact precautions (household and hospital
settings)

Post-elimination measles 0.45
[39]

Spillover
(reintroduction)

Targeted vaccination of international travelers [39–41]

Both Vaccination

Crimean-Congo hemorrhagic fever
(CCHF)

< 1a Human-to-human
(nosocomial)

Case isolation
Contact precautions (PPE)

[42–44]

Supercritical pathogens

SARS-CoV 2.7
[45]

Spillover Culling civets
Reducing contacts in live markets

[45, 46]

Human-to-human Quarantine
Case isolation
Contact precautions (PPE)

SARS-CoV-2 2.2–6.47
[47, 48]

Spillover Market closure [49, 50]

Human-to-human Social distancing
Travel restrictions
Contact precautions (PPE)
Quarantine and isolation

Ebola 1.5 to 2.5
[51–53]

Spillover Avoid contact with animals found dead
Vaccination of nonhuman primates

[51, 54–59]

Human-to-human Safe burial
Contact precautions (PPE)
Drug treatments
Ring vaccination

Both Vaccination of general population

Yellow fever 4.8 Spillover Vector control [60, 61]
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(i.e. those infected by the index case) will have R cases,
on average. Each of these cases will infect another R
cases, so the second generation will have R2 cases, and
so on. Thus the mean number of cases in each minor
outbreak, including the primary case that triggers the
outbreak, is given by a geometric series, and for R < 1
[68]:

E total # of cases per outbreakð Þ ¼ 1þ Rþ R2 þ R3 þ⋯

¼ 1
1 − R

ð1Þ

The expected total incidence rate I is then given by the
product of the spillover rate and the mean number of
cases associated with each spillover event:

I ¼ λz
1 − R

: ð2Þ

Proportion of cases infected by human sources
As shown above (Eq. 1), when R < 1, the expected num-
ber of cases that result from each introduction is 1/(1-
R). Because there is one primary case per introduction,
the proportion of cases that are primary is given by the
reciprocal of this quantity and is equal to (1-R). Thus,

for zoonotic pathogens with R < 1, the expected propor-
tion of cases infected by humans is R.

Analysis of control measures for stuttering zoonoses
We consider the effect on total incidence of control
measures that reduce spillover rates, human-to-human
transmission, or both. Let cz be the factor by which con-
trol measures reduce spillover rates, and cR be the factor
by which control measures reduce the reproductive
number in the human population. When these reduction
factors equal 1, there is no impact on transmission;
when they equal 0, that mode of transmission is halted
completely. The total incidence under control, Ic, is
then:

Ic ¼ czλz
1 − cRR

ð3Þ

For control measures that affect both modes of trans-
mission equally, such as protective vaccination of
humans, cz = cR = c and this expression simplifies
accordingly.
In settings where it is necessary to choose between

measures to reduce zoonotic spillover (via cz) and mea-
sures to reduce human-to-human transmission (via cR),
we can compare the total incidence when each measure

Table 1 A collection of systems which have implemented control measures targeted at spillover animal-to-human transmission,
human-to-human transmission, or both and their associated reproductive numbers (Continued)

Pathogen R Transmission
mode targeted

Intervention References

[62] Human-to-human Urban vector control

Both Vaccination
Protective behavior (PPE)

a Human-to-human transmission has been reported in nosocomial settings but is rare

Fig. 1 The expected source of infection for cases is determined by the reproductive number for human-to-human transmission
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is in place. The point where the two strategies are
equivalent is given by:

λz
1 − cRR

¼ czλz
1 − R

ð4Þ

Since the zoonotic spillover rate enters both sides
linearly, the preferred strategy in a given context is gov-
erned by the reproductive number. Rearranging these
expressions, we can find the value of the reproductive
number where the two strategies are equivalent:

Rswitch ¼ 1 − cz
1 − czcR

ð5Þ

When R > Rswitch, the strategy to reduce human-to-
human transmission will yield a greater reduction in
incidence.

Cost-benefit analysis of control measures
To incorporate the influence of differing cost, we con-
sider how the effectiveness of control measures varies
with effort using a simple model for the principle of
diminishing returns on investment (Fig. 2). This corre-
sponds to many public health settings where heterogen-
eity in the structure, accessibility and compliance of
populations means that the incremental cost of expand-
ing coverage rises as coverage rises. We model this
phenomenon by setting the effectiveness of control mea-
sures to be a declining exponential function of resources
invested, r. To reflect the different costs of different con-
trol strategies, we introduce a factor α to scale the return

on investment for reducing spillover relative to reducing
human-to-human transmission:

cz ¼ e − αr and cR ¼ e − r ð6Þ

Substituting these expressions into Eq. 5 and solving for
the value of the reproductive number Rswitch at which
the strategies are equivalent, we find:

Rswitch ¼ 1 − e − αr

1 − e − αþ1ð Þr ð7Þ

Rswitch is the value of R above which control measures
should be targeted at human-to-human transmission, for
a given level of resource investment. The curves in Fig. 3
are generated by plotting 1 – cz (or equivalently, 1 − e−αr)
versus Rswitch parametrically as a function of r, for differ-
ent values of the relative cost α (which are shown as dif-
ferent line types).

Analysis of reactive control measures
For a given reduction factor (c) describing the effective-
ness of control, the greatest reduction in incidence is ob-
tained from control measures such as vaccination that
simultaneously reduce both zoonotic spillover and
human-to-human transmission. When this is not pos-
sible and when resources are constraining, it may be de-
sirable to implement control measures in a reactive
manner. Here we analyze the impact of control policies
that focus on reducing spillover as a default but switch
their focus to reducing human-to-human transmission
when an outbreak has been detected. We assume that
the switch occurs after k generations of transmission

Fig. 2 The cost function for control measures. The solid black line indicates equal cost between implementing spillover control and reducing
human-to-human transmission. The x-axis shows an arbitrary scale of resource investment. The dashed and dotted lines show a 2-fold and 10-
fold difference, respectively, in the costs of the two control measures. Each line is marked by the relative cost of reducing spillover by a given
proportion compared to the cost of reducing human-to-human transmission by the same proportion

Mummah et al. One Health Outlook            (2020) 2:17 Page 5 of 15



among humans, reflecting inevitable delays in case iden-
tification and policy implementation. If control is im-
posed after the first generation of human-to-human
transmission has occurred (k = 1), then the first gener-
ation will have expected size R and subsequent genera-
tions will have expected size cRR. Thus, the expected
number of cases in the minor outbreak will be:

E Xð Þ ¼ 1þ Rþ R cRRð Þ þ R cRRð Þ2 þ⋯

¼ 1
cR

1
1 − cRR

� �
þ 1 −

1
cR

� � ð8Þ

In the Supplement we show that the general form, for a
delay of k generations, will be:

E Xð Þ ¼ 1

ckR

1
1 − cRR

� �
þ
Xk
i¼0

Ri 1 −
ciR
ckR

� �
ð9Þ

Thus the total incidence under reactive control strategy,
with reduction factors cR and cz, is:

Ic ¼ czλz
1

ckR

1
1 − cRR

� �
þ
Xk
i¼0

Ri 1 −
ciR
ckR

� � !
ð10Þ

This expression was used to plot the green curves in
Fig. 3 with cR = cz.

Decomposing spillover rate into risk groups
For most zoonotic pathogens, zoonotic spillover risk is
not fixed across the population due to variation in eco-
logical, epidemiological, and behavioral factors. To

explore how heterogeneous spillover risk might influ-
ence the choice of disease control strategy, we analyze a
model with two defined groups with different risk of
zoonotic infection. We define p as the proportion of the
population in the group with higher risk of zoonotic
spillover. Let λH be the spillover rate for the high-risk
group and λL be the spillover rate for the low risk group.
Then the total spillover rate λz can be written as pλH +
(1 − p)λL. Thus, in the absence of control measures, the
incidence is given by:

I ¼ pλH þ 1 − pð ÞλL
1 − R

ð11Þ

Analysis of control measures for subcritical zoonoses with
risk groups
We now consider the effect of different control mea-
sures when there are defined high-risk and low-risk
spillover groups. Like before, we can apply a general
spillover reduction term, cλ, that applies to both risk
groups to reduce the two spillover rates equally. The
total incidence is then:

Ic ¼ cλ pλH þ 1 − pð ÞλLð Þ
1 − cRR

ð12Þ

In settings with defined risk groups, interventions that
target the high-risk group are an attractive strategy for
reducing overall incidence. To model control measures
targeted at the high-risk spillover group, we define cH to

Fig. 3 Impacts of different control measures on incidence of a zoonotic infection with initial value of R (i.e. before control) between 0 and 1.
Panel a illustrates the effects of control on the total incidence expected in a focal population, whereas panel b shows the proportional reduction
in expected incidence when compared to the incidence level without control (black line). In a, the black line shows how the expected total
incidence increases nonlinearly with R, for a fixed rate of zoonotic spillover. Colored lines show the total incidence that would result from
interventions that cause 50% reductions in spillover transmission (red), human-to-human transmission (blue), or both types of transmission
(purple). Green lines show the incidence resulting from a reactive intervention strategy, where effort is focused on reducing spillover transmission
but is shifted to reducing human-to-human transmission once an outbreak is detected. The three green lines show the total incidence resulting
when control is shifted after one, two, or three generations of transmission among humans, respectively from top to bottom
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be the factor by which control measures reduce spillover
rates in the high-risk group. The total incidence under
such a targeted control policy is then:

Ic ¼ cHpλH þ 1 − pð ÞλL
1 − cRR

ð13Þ

We assume that targeted control makes more efficient
use of resources, in proportion to the size of the high-
risk group. Thus to calculate the effect of targeted con-
trol in our cost-benefit analyses, we multiply the re-
sources invested by a factor 1/p. The reduction factor cH
is thus a function of resources invested, r, the factor α
that reflects the relative cost of reducing spillover versus
reducing human-to-human transmission, and the pro-
portion of high-risk individuals in the population, p:

cH ¼ e − αr=p ð14Þ

Different combinations of targeted spillover reduction,
universal spillover reduction, and efforts to reduce R give
rise to incidence expressions similar to Eqs. (10) and
(13). Table S1 contains the full list of equations that
were used to plot the curves in Figs. 6 and 7.

Results
Incidence and control of subcritical zoonoses
Our analysis of control measures for subcritical zoonoses
is guided by strikingly simple predictions, derived from
basic theory for outbreak dynamics, about the expected
proportion of all human cases infected by other humans
versus by animals (Fig. 1; Eq. 1). The relative importance
of these transmission routes in any system is governed
by the efficiency of human-to-human transmission, as
quantified by R. For subcritical zoonoses with R < 1, the
expected number of cases that result from each intro-
duction (including the 1 primary case) is 1/(1–R), and
thus the proportion of cases infected by humans is R.
When R > 1, endemic circulation of the pathogen in the
human population is possible. Averaging over many in-
troductions, secondary cases from successful outbreaks
greatly outweigh the primary cases, including instances
where introductions go extinct, and effectively all cases
are from human sources.
For a given rate of zoonotic spillover, the expected

total incidence level depends strongly on the prevailing
value of R, with expected outbreak sizes rising sharply as
R approaches 1 (Fig. 3a). Accordingly, disease control in-
terventions exhibit marked differences in effectiveness as
a function of R, in both absolute and proportional terms
(Fig. 3a,b). Because the total incidence scales linearly
with the spillover rate (Eq. 2), measures that reduce
spillover transmission have a fixed proportional impact,
regardless of R (Fig. 3b). Measures to reduce human-to-
human transmission have limited impact when R is low,

compared to measures reducing zoonotic spillover, but
this situation is reversed dramatically as R approaches 1
(Fig. 3). When comparing measures that reduce either
type of transmission by 50% (i.e. comparing cz = 0.5 to
cR = 0.5), spillover-reducing measures are preferred for R
values up to 0.67, then measures reducing human-to-
human transmission are preferred above this point (Eq.
5, Fig. 3a). The most effective control measures are
those, like vaccination, that reduce both routes of trans-
mission by a given amount. When vaccines are not avail-
able, as is initially the case for many emerging
pathogens, a reactive strategy that targets spillover then
switches to human-to-human transmission once an out-
break is detected can be almost as effective, even if the
switch is delayed for several generations of transmission
(Fig. 3a,b).

Optimal control strategies with different levels of
resources
We then considered how various control strategies per-
form under different scenarios of resource investment,
where resources govern the effectiveness of control mea-
sures via our assumption of diminishing returns on in-
vestment (Fig. 2). Two findings stood out. First, control
measures that focus strictly on reducing human-to-
human transmission will never reduce incidence to zero
(Fig. 4). Even with very high resource investment, when
human-to-human transmission is halted entirely, pri-
mary cases are undiminished. However, at lower re-
source levels, measures to reduce human-to-human
transmission can be cost-effective, depending on the epi-
demiological context (Fig. 4). In low transmissibility
settings, investing resources into reducing human-to-
human transmission is only barely better than doing
nothing. As R increases, though, we see a growing range
of resource levels where reducing R is more effective
than reducing spillover. When R = 0.9, this difference is
large and persists throughout almost the full range of in-
cidence reduction – yet only spillover reduction can
drive incidence to zero (Fig. 4). Unsurprisingly, if it is
possible to reduce both modes of transmission at the
same cost as reducing one, then this is always the most
cost-effective strategy. Notably, though, the reactive
strategy is nearly as cost-effective, given the costs of re-
ducing cross-species transmission and human-to-human
transmission are equal.
For most emerging zoonoses a vaccine is unavailable,

and in many settings reactive measures may not be prac-
tical due to logistical challenges, unavoidable delays, or
shortcomings in surveillance. In these settings a choice
must be made between reducing zoonotic spillover or
reducing human-to-human transmission, and we can de-
termine which strategy would be most effective for a
given R value. The preferred strategy depends on the
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level of resources available, which we quantify here by
the proportional reduction in spillover that is achievable
if all resources are devoted to spillover control (Fig. 5).
The curved solid line marks the boundary between opti-
mal strategies, assuming it is equally expensive to

implement spillover reduction or human-to-human
transmission reduction (i.e. α = 1). This line corresponds
to Eq. 7 for Rswitch, plotted parametrically as a function
of resource investment (i.e. with zero investment and
cz = 1 at the bottom, and infinite investment and cz = 0 at

Fig. 4 Impacts of control measures with varying resource investments on incidence of a zoonotic infection with R between 0 and 1. Each panel
shows a different R (before control) value. The black lines show the incidence under no control. Colored lines show the change in total incidence
that would result from increasing investment for interventions that cause reductions in spillover transmission (red), human-to-human transmission
(blue), or both types of transmission (purple). The green line shows the incidence for increasing investment resulting from a reactive intervention
strategy, where effort is focused on reducing spillover transmission but is shifted to reducing human-to-human transmission once an outbreak is
detected (Detection after two generations of transmission is shown). Controls measures targeting spillover transmission are assumed to be
equally costly as measures targeting human-to-human transmission, i.e. α = 1

Fig. 5 Policy guidance whether incidence will be reduced more by focusing on reducing spillover transmission or human-to-human transmission,
for different values of R (before control) and the reduction in spillover that is achievable given resource constraints. The solid line shows the
boundary between preferred strategies when costs of the two types of control are equal, as defined by Eq. (5). The dashed and dotted lines
show how the boundary shifts due to differences in relative cost (each line is labeled by the relative cost of reducing spillover by a given
proportion compared to the cost of reducing R by the same proportion)
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the top). When R is low or resource levels are high (Fig.
5 - shaded in orange), it is preferable to cut off zoonoses
at the source by focusing control efforts on reducing
cross-species spillover. As R approaches 1, it becomes
more effective to reduce human-to-human transmission,
as a diminishing fraction of cases are attributed to spill-
over. Yet in order to drive total incidence to zero, in the
limit of high resource investment, it is necessary to focus
on spillover reduction. If the costs of the strategies are
not equal, the tradeoff line shifts (Fig. 5, dotted and
dashed lines). The greater the cost of reducing spillover
transmission relative to reducing human-to-human
transmission, the more the tradeoff curve moves to the
left, indicating that targeting human-to-human transmis-
sion would be a better use of resources for lower R
values – though spillover reduction always becomes
preferable as we aim to push incidence levels toward
zero (Figs. 4 and 5). Conversely, if reducing spillover
transmission is substantially cheaper than reducing
human-to-human spread, then spillover reduction re-
mains the preferred strategy for values of R approaching
1 (Fig. 5).

Risk heterogeneity and the potential benefits of targeted
control
In many settings, there are identifiable groups at ele-
vated risk for zoonotic spillover risk, and these high-risk
groups present an attractive focus for targeted control
measures. To incorporate a risk structure for spillover in
our model, we assumed that the high-risk group com-
posed a fixed proportion (here p=0.10) of the popula-
tion, and varied the rate ratio of zoonotic infection (λH/
λL) between the high- and low-risk groups. Under no
control, total incidence grows nonlinearly with increas-
ing R, as in Fig. 2a, and also rises as the relative risk of
spillover in the high-risk group increases (Fig. 6a). The
latter effect is a simple reflection of increased total spill-
over in the population, as we treat λL as constant.
Considering different control strategies, we find that

the broad hierarchy of strategies as described above is
remarkably robust to heterogeneities in spillover risk,
while the epidemiological parameters shape the potential
benefit of targeted control. We first observe that untar-
geted control policies, such as general awareness cam-
paigns aimed at reducing spillover in the whole
population or human-to-human transmission, are un-
affected by the defined risk groups (Fig. 6b & c). In con-
trast, a targeted strategy to reduce spillover, such as
improved biosafety protocols among people who have
high-risk contacts with animals, will have varying impact
depending on the risk ratio (Fig. 6d), but as with univer-
sal spillover reduction (Fig. 6b), this impact does not ex-
hibit any dependence on R. We also note that the overall
incidence reduction appears lower for targeted control

than for universal spillover control, but this is because
this plot assumes equal reduction factors (c = 0.5) for all
control measures; under this assumption, control mea-
sures are inevitably more impactful when applied to the
whole population versus a high-risk group of just 10% of
the population. Considering mixed strategies that com-
bine targeted control of the high-risk spillover group
with general control of human-to-human transmission
(Fig. 6e-h), we see that the benefits of targeted control
for total incidence reduction are greater for higher risk
ratios, but this difference diminishes as R approaches 1
and human-to-human transmission dominates the epi-
demiology. As in Fig. 3b, the benefits of including
human-to-human transmission controls depend on the
delay before initiation. For longer delays the curves re-
semble the targeted spillover control in Fig. 6d for low
values of R, since when R is low many transmission
chains do not last long enough to be affected by reduced
human-to-human transmission. In contrast, under joint
programs with no delay (Fig. 6e), the benefits of control
are seen immediately as R increases.
Finally, we consider targeted control measures under

different resource scenarios, to explore the possible ben-
efits of efficiently reducing spillover in the high-risk
group. Again, we see a tradeoff between strategies pre-
ferred at modest resource levels and those preferred
when resources are not limiting (Fig. 7). Among strat-
egies that only reduce spillover transmission (red and or-
ange lines in Fig. 7), targeted control shows considerable
benefits at low resource levels, particularly for high risk
ratios and higher values of R. Yet targeted strategies are
less effective at high resource levels, since they do not
reduce spillover in the low-risk group, and hence can
never reduce incidence to zero. A similar pattern is
found for mixed strategies, where targeted joint or react-
ive approaches (i.e. high-risk spillover reduction followed
by a switch to reducing human-to-human transmission
once an outbreak is underway) are the most effective
control policies at low resource levels, particularly when
R > 0.5 and the risk ratio is high, but are incapable of re-
ducing incidence to zero even at high levels of invest-
ment. In many other epidemiological settings, such as
when R is 0.5 or lower and when risk ratios are near 1,
any benefits to targeted control are imperceptible and
tend to be outweighed by the disadvantages of allowing
spillover to the low-risk group to continue unchecked.

Discussion
Implementing efficient, cost-effective control measures
is crucial for the control of emerging infectious disease,
both to reduce the disease burden of human cases and
to minimize the opportunities for pathogen adaptation,
international spread, or other adverse events. However,
for subcritical pathogens that exhibit low transmissibility
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among humans, it is not obvious whether control efforts
should focus on reducing primary cases arising from
spillover from external reservoirs or reducing secondary
cases arising from human-to-human transmission. Using
a simple mathematical model, we developed a theoretical
framework to guide decisions about how to target re-
sources under scenarios with different pathogen trans-
missibility and risk group structure. We focused on the
relative impacts achievable in resource-constrained set-
tings, as well as the maximum benefits that could be ob-
tained when resource investment was high. Our work is
framed in the context of zoonotic infections, where in-
troductions arise via cross-species spillover from animal
reservoirs, but our findings translate fully to other sce-
narios where outbreaks of subcritical pathogens are

seeded by introductions from outside. This includes
vaccine-preventable diseases such as measles in post-
elimination settings where herd immunity has reduced R
below 1, or pathogens such as Methicillin-resistant
Staphylococcus aureus (MRSA) in hospitals that exhibit
inefficient nosocomial transmission [39, 40, 69]. Geo-
graphic importation from endemic regions serves as
‘spillover’ for measles or COVID-19, introducing the
pathogen into areas where it was previously eliminated
or brought under control. Similarly, community intro-
duction of MRSA into hospitals serves as the spillover
mechanism prior to transmission within the hospital.
We found that the optimal focus of control measures

for subcritical pathogens depends primarily on the
human-to-human transmissibility of the pathogen, as

Fig. 6 Impacts of different control measures on the total incidence of a zoonotic infection with R (before control) between 0 and 1 with a
varying ratio of high and low spillover rates. Panel a shows how total incidence increases with R for varying ratios of high-to-low zoonotic
spillover. Panels b-e illustrate proportional reduction in incidence for controls that would cause 50% reductions in all spillover transmission (b),
human-to-human transmission (c), spillover transmission into the high-risk group (d), or jointly high-risk spillover and human-to-human
transmission (e). Panels f-h show the proportional reduction in incidence given a reactive strategy that first targets high-risk spillover and then
switches to reducing human-to-human transmission after 1, 2, or 3 generations of transmission, respectively. Note that longer delays cause the
results to resemble Panel d over increasing ranges of R values, since at low R many transmission chains don’t last multiple generations. The
proportion of high-risk individuals in the population was set to 0.10
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summarized by the reproductive number R (Fig. 3). For
pathogens with the lowest transmissibility among
humans (R near zero; e.g. H7N9 avian influenza), mea-
sures to reduce zoonotic spillover are most effective.
Thus for these zoonoses, strategies such as awareness
campaigns to reduce contact with reservoir host animals
or animals found dead, infection control in live animal
markets, culling infected reservoir populations, and re-
moving rodents from homes (Table 1) will be most ef-
fective in reducing human cases. For pathogens with
greater transmissibility among humans (e.g. post-
elimination measles, SARS-CoV-2, or Ebola), reducing
human-to-human transmission becomes more effective.
In such scenarios, preferred control methods will include

providing personal protective equipment in high-risk
settings such as hospitals, awareness campaigns to re-
duce unprotected contact with sick individuals, and
strengthened surveillance for improved case tracking
and faster case isolation. Of course, the strongest control
strategies would act to reduce zoonotic spillover and
human-to-human transmission at the same time, as with
a protective vaccine. Where this option is not available
(or is cost-prohibitive to deploy widely in advance of an
outbreak), we found that a reactive strategy could
achieve nearly the same effect without substantially
greater investment. Such a strategy would have a base-
line emphasis on reducing zoonotic spillover, but when
a spillover or subsequent outbreak is discovered, the

Fig. 7 Impacts of different control measures with varying resource investment on the total incidence of a zoonotic infection with R (before
control) between 0 and 1 with different ratios of high-to-low spillover rates. Columns (left to right) show increasing values of R. Rows (top to
bottom) represent an increasing ratio of spillover rates in high-risk versus low-risk groups (λH/λL). The black lines indicate total incidence under no
control. Colored lines represent the reduction in incidence for increasing resource investment. These scenarios were explored earlier in Fig. 4 but
now include the added comparison of targeted versus universal spillover control for all strategies
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emphasis would shift locally to reducing human-to-
human transmission. Strategies could include an aware-
ness campaign that focuses on reducing interactions
with known animal hosts, such as not touching dead an-
imals in the forest, shifting to increased contact precau-
tions and active surveillance to detect human cases
quickly to reduce human-to-human transmission once
an outbreak is detected [27].
Unsurprisingly, many existing control policies de-

signed by public health professionals align broadly with
the recommendations of our model. For pathogens with
low R such as H7N9 avian influenza, our work advises
an emphasis on preventing spillover. This is consistent
with current public health control measures for H7N9
avian influenza, such as market disinfection or cessation
of live poultry trade, which focus on reducing contact
with birds and lowering risk of cross-species transmis-
sion [17–19]. In contrast, Lassa virus has a higher R
value estimated near 0.7 and, thus, has a higher expected
proportion of cases which arise from human-to-human
transmission. Public health policy for Lassa fever has re-
cently focused on preventing nosocomial transmission
between humans [34–36]. In some settings, R changes
through time due to shifts in population immunity or
other factors, and priorities for disease control should
change accordingly. For example, R for monkeypox has
increased over the decades since the cessation of wide-
spread smallpox vaccination around 1980 [28, 70], and
the historic emphasis on spillover transmission should
be re-examined in light of changing circumstances. Simi-
larly, R for measles has risen as childhood vaccination
rates have dropped [39, 71].
Public health systems frequently deal with resource

constraints, in terms of finances and human or institu-
tional capacity [72]. Exploring the effects of resource in-
vestment on the impacts of control on overall human
incidence, our work illustrates potential trade-offs be-
tween higher cost effectiveness at low investment versus
the ability to reduce incidence to zero at high invest-
ment (Fig. 4). At low investment levels, the best simple
strategies are those which follow the priorities laid out
above, i.e. focusing on spillover if R is low, or on
human-to-human transmission if R is higher. However,
as resource levels increase, the limitations of these sim-
ple priorities become clear, because strategies that omit
the reduction of spillover cannot ever reduce human in-
cidence to zero as they do not decrease the number of
primary cases. Therefore, it is necessary to incorporate
spillover reduction in any policy hoping to drive inci-
dence to zero. When all types of interventions are as-
sumed to be available with the same cost, then joint
approaches that reduce both animal-to-human transmis-
sion and human-to-human transmission are most effect-
ive for a given resource level. When resources do not

permit reduction of both transmission modes simultan-
eously, practitioners must decide which transmission
mode is more important to control. Our analysis pro-
vides guidance as to which transmission method is best
to control as a function of resource investment and R,
accounting for possible differences in cost (Fig. 5). While
further work is needed to characterize the cost-efficacy
curves for control measures in particular systems, in
order to implement this approach, this analysis provides
a foundation for rational cost-benefit analysis to support
disease control policy.
Zoonotic spillover risk is heterogeneous in the human

population, since some groups have more frequent or
riskier exposures to zoonotic reservoirs due to cultural
or occupational factors [5]. Our analysis demonstrated
that targeted spillover control in these high-risk groups
offers the potential for markedly greater reductions in
incidence, relative to control efforts spread across the
entire population, when resources are limited. However,
these targeted strategies are limited in impact as invest-
ment levels rise, since they don’t reduce the spillover
rate in the low-risk group so they can never drive inci-
dence to zero. If there is negligible risk in the low-risk
group or if the low-risk group receives low-intensity
control as a side benefit of the targeted control (for in-
stance, via an awareness campaign focused on the high-
risk group but available to all), then the targeted control
strategy would remain the most efficient option. Ultim-
ately, the desirability of targeting the high-risk spillover
group depends on the epidemiological context (R value),
resource level, and risk ratio between the risk groups.
It is important to recognize that there are often sub-

stantial challenges in identifying and quantifying risk fac-
tors for spillover, to support a rational decision about
targeting. For zoonoses that spill over very infrequently
and unpredictably, such as ebolaviruses, coronaviruses
including SARS-CoV-2 and MERS, or some hantavi-
ruses, the necessary data are hard to acquire and uncon-
trolled variation among spillover events can obscure
patterns. In settings where the majority of individuals
engage in potentially high-risk activities, yet spillover
events are sporadic due to variation at other levels (e.g.
in infection prevalence in the animal reservoir), it can be
difficult to ascertain how the magnitude of risk is split
across specific risk factors [2]. For example, in popula-
tions which nutritionally or economically rely on
bushmeat, the majority of individuals can be exposed to
multiple animal species through multiple modes of con-
tact (e.g. hunting, food preparation, and cooking), which
all present a potential risk of transmission [73]. The
resulting difficulties in determining risk factors, and
identifying distinct high-risk groups, can further
complicate the implementation of targeted control
measures.
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Several caveats should be borne in mind in interpret-
ing our analysis, which point to opportunities for further
research. For the sake of clarity, our model is based on
expected incidence levels under different scenarios, but
stochastic variation can be large so individual outbreaks
could differ substantially from our predictions. We also
assumed stationarity (i.e. no changes in the model pa-
rameters through time), ignoring behavior change of af-
fected populations or on-the-ground factors that can
impede control measures [74]. We did not account for
superspreading, or for variation in transmissibility across
spatial or social contexts, both of which can have dra-
matic effects in the early phase of outbreaks [65, 75].
Our analysis incorporated heterogeneities in spillover

risk but did not address different risk groups for on-
going human-to-human transmission. Such a scenario
could arise due to age-structured mixing or susceptibil-
ity, or from other risk factors such as occupational ex-
posure in health-care settings, and could have important
effects on outbreak dynamics [76, 77]. Factors giving rise
to immune compromise, such as human immunodefi-
ciency virus (HIV) infection, are another potential
source of heterogeneity in both modes of transmission
[78, 79]. The existence of distinct risk groups for
human-to-human transmission would offer another im-
portant opportunity for targeted control measures and
warrants further investigation. All of the above complex-
ities could be addressed via more complex analytic
methods, such as multitype branching processes, or via
stochastic simulation analyses.
Our cost-benefit model is theoretical in nature and

aims for simplicity rather than realism. We used a phe-
nomenological model to represent diminishing returns
on investment, but we do not properly account for com-
plexities in scaling up control measures in space or time.
For the reactive strategy, we assumed a clean and imme-
diate switch between reducing spillover and reducing
human-to-human transmission with no overlap and no
lapse in control. In real-world settings, ramping up (or
terminating) control measures is inevitably more compli-
cated and a reactive strategy would likely entail delays
and changing effectiveness through time. We also as-
sumed there is no additional cost associated with switch-
ing strategies, but this is unlikely to be true due to the
resources involved in initiating any program. While our
theoretical analysis enabled a first exploration of the
general cost-effectiveness of subcritical disease control,
more intensive case studies are needed for specific
pathogens.

Conclusions
Subcritical zoonotic pathogens exist at the animal-
human interface, and little policy guidance exists on the
most effective ways to implement controls. In this study

we present a framework to think systematically about
controlling subcritical zoonoses, considering the relative
importance of reducing animal-to-human spillover ver-
sus human-to-human transmission. Our work shows
how the relative effectiveness of these strategies depends
on epidemiological context and highlights a trade-off be-
tween cost-effectiveness at low resource levels and the
potential to reduce incidence to zero as investment in-
creases. Our findings illustrate core principles for
evidence-based control of subcritical zoonoses and pro-
vide a foundation for integrative studies of particular
systems to carry these ideas toward implementation.
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