RESEARCH

Open Access

Prevalence, diversity of diarrhoeagenic Escherichia coli and associated risk factors in well water in Ile-Ife, Southwestern Nigeria

Babatunde Odetoyin^{1*}, Olawumi Ogundipe¹ and Adebola Onanuga²

Abstract

Background: Diarrhoeagenic Escherichia coli (DEC) strains are common causes of morbidity and mortality worldwide. Waterborne DEC could pose a health risk to humans through domestic use of contaminated water. However, epidemiological studies on DEC in well water are scarce in Nigeria. This study determined the prevalence, diversity and factors associated with the presence of DEC in well water in Ile-Ife, southwestern Nigeria.

Methods: We assessed 143 wells for safety and a questionnaire was administered. Contaminating isolates were identified as E. coli by amplifying their 16S rRNA gene. Five diarrhoeagenic E. coli pathotypes were sought using multiplex polymerase chain reaction (PCR). (GTG)5 repetitive PCR and Shannon diversity index were used to determine isolates diversity. Multivariate analysis was used to reveal the factors associated with the presence of DEC in well water.

Results: Fifty-six (39.2%) wells were contaminated by diarrhoeagenic E. coli. Wells with dirty platforms, undercut by erosion and sited near septic tanks significantly harboured DEC (p < 0.05). There was a preponderance of Shiga-toxin producing E. coli among the isolates with 10 (17.9%) wells contaminated by multiple DEC. The DEC isolates showed 45 unique fingerprints and were divided into six clades, with an overall diversity index of 18.87.

Discussion: The presence of DEC in well water highlights the risk to human health associated with the use of untreated water. There was a high degree of genetic diversity among the isolates implying multiple sources of contamination. There is a need for periodic sanitation and inspection of wells for cracks to prevent seepages and possible outbreaks of waterborne diseases.

Keywords: Escherichia coli, Diarrhoea, Well water, Risk factors, Diversity, Contamination, Prevalence

Background

Diarrhoeal diseases are significant public health problems in developing countries [1]. Each year, they account for 3.6% of the total global burden of diseases and 1.5 million deaths. About 88% of this burden has been ascribed to inadequate hygiene, sanitation and a lack of potable water mostly in developing countries [1, 2]. Escherichia *coli*, a member of faecal coliforms has a significant place

¹ Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria

Full list of author information is available at the end of the article

in water microbiology as an indicator of faecal pollution and a pathogen in drinking water. As a pathogen, it causes a variety of diseases ranging from urinary tract infections, sepsis, meningitis and bacteraemia to diarrhoea [3].

Diarrhoeagenic Escherichia coli (DEC) account for about 40% of episodes of acute diarrhoea in children in developing countries. They also play a significant causative role in diarrhoea in Nigeria, in both adults and children. Currently, there are eight pathotypes of DEC strains: enterotoxigenic, enterohaemorrhagic, enteroinvasive, enteropathogenic, enteroaggregative, diffusely adherent, cytolethal

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

^{*}Correspondence: odetoyin@yahoo.com

distending toxin-producing and cell detaching *E. coli*. Each pathotype of DEC has a distinct set of virulence factors encoded in the plasmids or chromosome. The genes that encode these factors are conserved among strains that are isolated from diverse sources in different parts of the world [4].

DEC strains are usually transmitted via a faecaloral route which involves contaminated sources of water or food and may be involved in outbreaks of waterborne diarrhoea. Escherichia coli can enter drinking water via inadequate or failing septic or sewer systems, runoff from land applied with animal wastes or animal feeding operations and wildlife. Identification of the source of pollution is a high priority in order to protect source water quality and to assess the public health risk associated with contamination from a particular host source. Consequently, much progress has been made over the years to develop many phenotypic and genotypic microbial source tracking (MST) methods which are recommended components of faecal pollution reduction strategies [5, 6].

Nigeria is one of the countries in the world where about 90 million people don't have access to potable water and 130,000 children under the age of five die each year from avertable waterborne diseases due to uncoordinated efforts of various agencies of government. The larger part of the population, particularly those in the rural and suburban communities resort to water from wells and streams for domestic purposes [2, 7]. Those wells which are hand dug are usually around 4-15 ft in diameter and about 25 ft deep. In Ile-Ife, most of the wells are shallow because of the high water table. Shallow wells are more prone to contamination due to their proximity to the soil surface and potential source of contamination [8, 9]. These alternative sources of water are largely untreated and might harbour waterborne pathogens. Therefore, the use of these sources of water is a health risk for this population [7, 10].

Despite the risk posed by exposure to *E. coli* contaminated water, very little data is available on this in Ile-Ife, and the pathogenic potential, diversity of implicated isolates and factors associated with their presence in well water remain unknown. Therefore this study determined the prevalence, diversity and factors associated with the presence of DEC in well water in Ile-Ife, Southwestern Nigeria.

Methods

Study location and design

The study was done in Ife East Local Government Area, Ile-Ife, Osun State, Nigeria. Ife East Local Government Area is divided into six wards which are: Moore ward, Ilode ward 1, Ilode ward 2, Okerewe ward 1, Okerewe ward 2 and Okerewe ward 3. Ile-Ife is an ancient city in southwestern Nigeria with a population of 509, 035 [11]. The city lies on Latitudes 7°28'N and 7°45'N and longitudes 4°30'E and 4°34'E. Ile-Ife is in the tropical wet and dry climate of West Africa with an average rainfall of 1000 to 1250 mm between March and October and average relative humidity of 75 to 100%.

Study approval and sample collection

This study was approved by the Health Research Ethics Committee (HREC), Institute of Public Health, Obafemi Awolowo University, Ile-Ife, Nigeria (HREC No: IPHOAU/12/863). A total of 143 water samples were collected from wells that are distributed across the wards between March and December 2019 based on the formula of Sullivan and Soe [12]. The wells are used by the residents for domestic purposes. Wells that have not been disinfected for two months were included in the study while wells of owners that did not give their consent, and those that were disinfected were excluded. Up to 200 ml of water were obtained by lowering a sterile bottle into each well with the aid of a rope tied around its neck. All the samples were labelled appropriately, placed in an ice-packed box and transported within 2 h to the laboratory for processing.

Determination of well water quality

The quality of the samples was determined using the multiple tube fermentation technique as described by Cheesbrough [13]. A three-tube most probable number (MPN) method was used to determine faecal contamination of well water using MacConkey broth (Oxoid Ltd., Basingstoke Hampshire, England) as the culture medium. Samples of 50 ml, 10 ml and 1 ml of water were inoculated into corresponding dilution tubes with inverted Durham's tubes and incubated at 37 °C for 24 h. The tubes were observed for growth and gas production, and the MPN of coliforms in 100 ml of water was determined by referring to McCrady's table and interpreted as "Excellent", "Acceptable", "Unacceptable" and "Grossly polluted".

Detection of Escherichia coli in water samples

The Eijkman method was used to detect the presence of *E. coli* in the samples. All positive bottles from the previous test were subcultured into fresh double strength

and single strength MacConkey broth and peptone water and incubated at 37 °C for 24 h. The MacConkey bottles were checked after incubation for lactose fermentation (yellow colouration) and gas production (presence of a bubble in the Durham tubes). All positive MacConkey bottles were noted and three drops of Kovac's reagent were added to their corresponding peptone water bottles to detect indole (indicated by a red coloured ring). All positive samples were cultured on Eosin Methylene Blue Agar plates and incubated aerobically at 37 °C for 24 h. Up to three distinct colonies showing green metallic sheen were aseptically picked and streaked onto Nutrient agar (NA) (Oxoid Ltd., Basingstoke Hampshire, England) plates which were, in turn, incubated aerobically at 37 °C for 24 h [14]. All suspected E. coli isolates were stored at -20 °C in glycerol broths for further examination.

Isolate resuscitation and DNA extraction

All isolates were subcultured from glycerol broths on nutrient agar plates and incubated at $37 \,^{\circ}$ C for 24 h. Three colonies were picked from each culture and suspended in 50µl of sterile distilled water in an Eppendorf tube to extract the DNA of the isolates. The suspension was boiled for 10 min, kept on ice for 10 min, and centrifuged at 10,000 rpm for 10 min [15]. The supernatant was collected and used as a DNA template in PCR reactions.

Molecular identification of isolates by amplifying their gene

All organisms suspected to be *E. coli* by their phenotypic characteristics were confirmed as *E. coli* by amplifying their 16S rRNA gene (Table 1) [16]. E. coli strain 25922 was used as the positive control while water was used as the negative control. A 25 µl reaction mixture contained 12.5µL of 2XMaster mix, 10pmol each of the primers (Eurofins, USA), 2.4 µl of the DNA template and made up with Nuclease Free Water. Amplification conditions were as follows: Initial denaturation at 95°C for 5min; 35 cycles of denaturation at 94°C for 45 s, annealing at 45°C for 45s, and extension at 72°C for 1 min; followed by a final extension at 72°C for 5 min. Each PCR product $(10\,\mu l)$ was electrophoresed on a 1.5% (w/v) agarose gel in 1X TAE. Gels containing 5ul of 10µg/ml of ethidium bromide were visualized under ultraviolet (UV) light using a UVitec transilluminator (Avebury, Cambridge UK).

Detection of diarrhoeagenic genes in the isolates

All isolates were screened for virulence genes characteristic of five pathotypes of diarrhoeagenic *E. coli* comprising enteroinvasive *E. coli* (EIEC), enteropathogenic *E. coli* (EPEC), enterotoxigenic *E. coli* (ETEC), enteroaggregative *E. coli* (EAEC) and enterohaemorrghagic *E. coli* (EHEC) including shiga toxin producing *E. coli* (STEC) as described by Aranda et al. [17] with modifications (Table 1). PCR was performed with a 20 µl reaction mixture containing 12.5 µL

 Table 1
 PCR primers for diarrhoeagenic Escherichia coli and 16srRNA gene

Туре	Primer Designation	Primers (5 to 3)	Target gene	Amplicon size (bp)
ECO	ECO-1	GACCTCGGTTTAGTTCACAGA	16SrRNA	585
	ECO-2	CACACGCTGACGCTGACCA		
EPEC	eae 1	CTGAACGGCGATTACGCGAA	eae	917
	eae 2	CCAGACGATACGATCCAG		
	bfp 1	AATGGGCTTGCGCTTCCAG	bfpA	326
	bfp 2	GCCGCTTTATCCAACCTGGTA		
EAEC	EAEC1	CTGGCGAAAGACTGTATCAT	CVD432	630
	EAEC2	CAATGTATAGAAATCCGCTGTT		
ETEC	LTf	GGCGACAGATTATACCGTGC	LT	450
	LTr	CAATGTATAGAAATCCGCTGTT		
	STf	ATTTTTMTTTCTGTATTRTCTT	ST	190
	STr	CACCCGGTACARGCAGGATT		
EIEC	IpaH1	GTTCCTTGACCGCCTTTCCGATACCGTC	іраН	600
	IpaH2	GCCGGTCAGCCACCCTCTGAGAGTAC		
EHEC	Stx1f	ATAAATCGCCATTCGTTGACTAC	Stx1	180
	Stx1r	AGAACGCCCACTGAGATCATCC		
	Stx2f	GGCACTGTCTGAAACTGCTCC	Stx2	255
	Stx2r	TCGCCAGTTATCTGACATTCTG		

EIEC Enteroinvasive E. coli, EHEC Enterohemorrhagic E. coli, EAEC Enteroaggregative E. coli, EPEC Enteropathogenic E. coli, ETEC Enterotoxigenic E. coli

2XMaster mix, 10pmol each of PCR primers (Eurofins, USA), 2.4µl of the DNA template and made up with Nuclease Free Water. Two PCR reaction assays were used to amplify the eaeA (intimin of EHEC and EPEC), bfpA (bundle-forming pilus of EPEC), stx1 and/or stx2 (shiga toxins 1 and 2 of EHEC and STEC), eltB and/or estA (enterotoxins LT and ST of ETEC), ipaH (invasion plasmid found in EIEC and Shigella) and pCVD (pCVD432 of EAEC). E. coli strains E2348/69, O42, H10407, EDL 933 and E137 served as positive controls for EPEC, EAEC, ETEC, EHEC and EIEC respectively while sterile water was used as a negative control. For PCR 1 (eae, CVD432, stx1, ipaH, ST): Amplification conditions were as follows: Initial denaturation at 95°C for 3 mins; 37 cycles of denaturation at 94°C for 30s, annealing at 45 °C for 30s, and extension at 72 °C for 1 min; followed by a final extension at 72°C for 7 min. For PCR 2 (stx2, bfp, LT): Amplification conditions were as follows: Initial denaturation at 94°C for 3 mins; 37 cycles of denaturation at 94°C for 45s, annealing at 39°C for 30s, and extension at 72°C for 54 min; followed by a final extension at 72°C for 7 min. Each PCR product (10 µl) was electrophoresed on a 1.5% (w/v) agarose gel in 1X TAE. Gels containing 5ul of 10µg/ml of ethidium bromide were visualized under ultraviolet (UV) light using a UVitec transilluminator (Avebury, Cambridge UK).

Determination of isolates relatedness and diversity

(GTG) 5-PCR was used to subtype the isolates. PCR was performed with a $25\,\mu$ l reaction mixture containing 12.5uL 2XMaster mix, 10pmol each of the primer (5'GTGGTG GTGGTGGTG3'), 2.4 µl of the DNA template and made up with Nuclease Free Water. Amplification conditions were as follows: Initial denaturation at 95°C for 5 mins; 35 cycles of denaturation at 95°C for 60s, annealing at 40°C for 60s, and extension at 68°C for 8 min; followed by a final extension at 68°C for 8 min. Each PCR product (10 µl) was electrophoresed on a 1.5% (w/v) agarose gel in 1X TAE [18]. Gels containing 5ul of 10µg/ml of ethidium bromide were visualized under ultraviolet (UV) light using a UVitec transilluminator (Avebury, Cambridge UK). GelJ (Version 1.0) software was used to generate isolates similarity index [19]. The dendrogram was drawn with PAST (Version 4.0) software using neighbour-joining clustering method [20].

The genetic diversity of DEC isolates was calculated using the Shannon diversity index (*H*) formula [21].

$$H = -\sum_{i=1}^{S} p_i \ln p_i$$

i is the total number of isolates, *s* is the number of unique genotypes and *pi* is the number of isolates sharing the same genotype.

Data analysis

Data analysis was done with R statistical software (Version 4.0.3). Cross tables were produced with *the Grammar of Tables* in R package. Pearson chi-square and binomial logistic regression models were used to test for association of variables with the presence of DEC in water [22]. The *P*-value for a significant association was set at 0.05.

Results

Characteristics of wells

This study investigated water quality and characterized *Escherichia coli* in the study area from 143 wells. The sampling locations are shown on the map in Fig. 1 Twenty-five samples were obtained from Moore ward, 18 samples from Ilode ward 1, 49 samples from Ilode ward 2, 31 samples from okerewe ward 1, 9 samples from okerewe ward 2 and 11 samples from okerewe ward 3 (Table 2). Most of the wells were covered (n=108; 75.5%), some were partially covered (n=20; 13.99%), and a few were not covered (n=15; 10.5%). The majority of well owners were Christians (111, 78.7%), artisans (100, 69.9%) with secondary education (63, 50%) and lived in tenement (81, 56.6%). The mean age of the wells was 21 years and the average depth was 29.3 ft.

Contaminated wells and isolated Escherichia coli strains

One hundred and ten (110, 76.9%) wells were contaminated with coliforms bacteria. Ilode ward 2 (36; 32.7%) had the highest number of contaminated wells while Okerewe ward 3 (6; 5.5%) had the least number (Table 3).

A total of 169 *E. coli* strains were isolated from 98 wells of 110 contaminated wells. As shown in Table 3, 30 strains were isolated from the wells in Moore ward, 19 strains from Ilode ward1, 56 strains from Ilode ward 2, 37 strains from Okerewe ward 1, 12 strains from Okerewe ward2 and 15 strains from Okerewe ward 3.

Prevalence of Diarrhoeagenic Escherichia coli

Two sets of PCR assays were used to determine the prevalence of eight distinct virulence genes possessed by five *E. coli* pathotypes. Up to three strains of *E. coli* were isolated from each water sample and examined for diarrhoeagenic genes. The detailed results of the analysis are in Fig. 2, Tables 4 and 5.

Fifty-six (39.2%) wells were contaminated by diarrhoeagenic *E. coli* (DEC), yielding a total of 69 DEC strains. Okerewe 1(n=15) had the highest number of wells that were contaminated with DEC, while Okerewe 3(n=5) had the least number. There was a preponderance of STEC (n=35) among the strains, followed by

ETEC (n = 10). Two and five strains were both STEC/ tEPEC and ETEC/STEC respectively. Multiple pathotypes of DEC were recovered from 10 (17.9%) wells.

Factors associated with DEC contamination of wells

Of the wells that were contaminated by DEC, 16 (28.6%) were undercut by erosion, 26 (46.4%) were sited near septic tanks, 24(41.4%) had dirty platforms, 22 (37.9%) were owned by those who keep pets, 39(69.6%) were used by those in a tenement, 19(33.9%) were sited near livestock and 40(71.4%) were owned by artisans. The average age and depth of the wells were 17.5 ± 22.2

(mean \pm SD; Years) and 31.5 \pm 23.5 (mean \pm SD; Feet) respectively (Table 6).

Univariate analysis revealed that wells that were undercut by erosion (p = 0.018), sited near septic tanks (0.005), had dirty platforms (0.001), owned by those who kept pets (0.035), used by those in tenement (0.012) significantly harboured diarrhoeagenic *E.coli*.

The associated factors were further subjected to multivariate analysis using the binomial logistic regression model. Wells that were undercut by erosion (OR = 2.616, CI = 1.019-6.716, p = 0.046), sited near septic tank (OR = 2.611, CI = 1.131-6.027, p = 0.025), had dirty platforms (OR = 3.125, CI = 1.232-7.924, p = 0.016)

 Table 2
 Baseline characteristics of wells and owners

Characteristics	Overall (<i>N</i> = 143)
Wards	
llode 1	18 (12.6%)
llode 2	49 (34.3%)
Moore	25 (17.5%)
Okerewe 1	31 (21.7%)
Okerewe 2	9 (6.3%)
Okerewe 3	11 (7.7%)
Age of wells (Mean \pm SD; years)	20.6 ± 21.7
Depth of wells (Mean \pm SD; Feet)	29.3 ± 22.1
Mean of age (Mean \pm SD; years)	45.8±17
Mean of number of years in residence (Mean \pm SD; years)	14.2±16.4
Religion	
Christianity	111 (78.7%)
Islam	26 (18.4%)
Traditionalist	4 (2.8%)
Occupation	· · ·
Artisan	100 (69.9%)
Civil servant	28 (19.6%)
Religious leader	5 (3.5%)
Student	6 (4.2%)
Unemployed	4 (2.8%)
Level of education	
Primary	24 (19.0%)
Secondary	63 (50.0%)
Tertiary	39 (31.0%)
Residence type	, , , , , , , , , , , , , , , , , , ,
Flat	62 (43.4%)
Tenement	81 (56.6%)
Covered	
Covered	108 (75.5%)
Open	15 (10.5%)
Partially covered	20 (14.0%)
Presence of septic tank	
No	94/140 (67.1%)
Yes	46/140 (32.9%)
Keeping of pets	
No	96/138 (69.6%)
Yes	42/138 (30.4%)
Dirty platform	
No	104 (72.7%)
Yes	39 (27.3%)
Proximity of livestock to well	
No	102 (71.3%)
Yes	41 (28.7%)
Proximity of waste dump site to well	
No	137 (95.8%)
Yes	6 (4.2%)
Proximity of well to farm	
No	133 (93.0%)

Table	22	(continued)
IUNIC		(Continucu)

Characteristics	Overall (N = 143)
Yes	10 (7.0%)
Well undercut by erosion	
No	116 (81.1%)
Yes	27 (18.9%)

were significantly associated with the presence of DEC in wells. However, there was no significant association between wells that were owned by those who kept pets (OR=0.884, CI=0.335-2.329, p=0.803) and those used in tenement (OR=1.115, CI=0.418-2.977, p=0.828) and the presence of diarrhoeagenic *E. coli* (Table 7).

Relatedness and diversity of DEC isolates

Repetitive PCR was used to determine the relatedness of the DEC isolates. A representative (GTG)5-PCR fingerprint picture is shown in Fig. 3. Isolates banding patterns ranged from 1 to 14 bands. Bands molecular weight varied from 100bp to 4706bp. Fifty DEC isolates were typed by (GTG)5 while certain isolates did not produce any band and appeared not typeable. The (GTG)5-PCR fingerprints dendrogram is shown in Fig. 4. All the isolates clustered together. Nevertheless, six clades of strains were observed along the axis from 0 to 45. Clade 5 had the highest number of strains (12/50; 24%), while clade 3 had the least number (3/50; 6%). Four STEC isolates (119b-Opa-Moore, 23cw-Opa-Moore, 96-Oke Atan-Ilode1 and 94-Oke Atan- Ilode 1) from different locations and wards in the local government in Clade 5 are identical.

In all, the isolates were highly diverse as indicated by Shannon diversity index (H=18.87). Isolates from Okerewe ward 1 (H=5.41) were the most diverse while those from Okerewe ward 3 were the least diverse (H=3.17). Other diversity indices are: Moore (H=4.93), Ilode ward 1 (H=4.68), Ilode ward 2 (H=4.93) and Okerewe ward 2 (H=4.60).

Discussion

Diarrhoeal disease is a leading cause of morbidity and mortality in children globally and a high percentage of bacterial gastroenteritis is caused by diarrhoeagenic *E. coli* (DEC) [1]. In Nigeria, epidemiological studies on DEC isolates in drinking water are scarce. To the best of our knowledge, this is the first study in Nigeria that will investigate the presence of DEC in well water.

In this study, 169 *E. coli* strains were isolated from 98 out of 110 wells that were contaminated by coliform bacteria. All the isolates were screened for eight different diarrhoeagenic genes possessed by five *E. coli* pathotypes. We detected DEC in 56 wells in the six wards of

Wards

he local government			
Number of wells	Number of wells contaminated with coliform bacteria	<i>E. coli</i> Isolated	No of wells with <i>E. coli</i>
6	4	7	4
5	4	3	2
1	0	0	0
12	11	17	8
1	1	2	1

Table 3 Isolates distribution in the wards in the local government

Locations

wells	Isolated	with DEC	UEL ISOIATES	EAEC				EHEL	EFEC	tEPEC	STEC	AND STEC	EAEC, TEPEC
Moore 25	30	12	15	0	-	0	12	0	2	0	0	0	0
llode1 18	19	7	7	0	0	0	4	-	0	, -	-	0	0
llode 2 49	56	12	14	0	0	-	6	0	2	<i>(</i>	-	0	0
Okerewe 1 31	37	15	16	0	9	2	-	2	2	0	З	0	0
Okerewe 2 9	12	5	6	-	2	0	5	0	0	0	0	-	0
Okerewe 3 11	15	5	œ	0	-	-	4	0	-	0	0	0	1
Total 143	169	56	69	-	10	4	35	m	7	2	5	-	1
EIEC Enteroinvasive E.coli, Eh	<i>EC</i> Enterohemorrhagì	ic E. coli, EAEC Ente	eroaggregative E. co	<i>ili, EPEC</i> Ent∈	ropathoge	nic E. coli, E	TEC Entero	toxigenic E.	coli, STEC S	higa toxin prodi	ucing Escherich	<i>iia coli, tEPEC</i> typica	le

c E. coli	
oeagenic	
or diarrh	
<i>oli</i> and positive f	
oles collected, positive for E. co	
Number of samp	-
Table 4	

Enteropathogenic E. coli

1 11a PHFC 5b2 + far Ayelabola Ibde 1 2 92w STIC AND STEC Sb2 + far Lokore Ibde 1 3 Db35di STEC AND STEC Sb2 + far Lokore Ibde 1 4 D54ddi STEC Sb2 Oker Ann Ibde 1 5 D54di STEC Sb2 Oker Ann Ibde 1 6 D67dii STEC Sb2 Oker Ann Ibde 1 7 D59eii STEC Sb2 Oker Ann Ibde 2 9 18w STEC Sb2 Oke Opolovatan Ibde 2 10 37wi STEC AND EFEC Sb2 Oke Opolovatan Ibde 2 11 64sbi STEC Sb2 Ogolovatan Ibde 2 11 64sbi STEC Sb2 Ogolovatan Ibde 2 12 baba STEC Sb2 Ogolovatan Ibde 2 13 73D ml STEC Sb2 Ogolovatan	S/N	Strain number	Pathotype	Genes	Locations	Wards
2 PAW STEC AND FEPC St2 + Mp Ickore Ickore Ickore 3 DaSdaci ETEC AND STEC Str2 Dekrean Ickore 5 DsSGai STEC Str2 Oke Aran Ickore 6 DsS7rii STEC Str2 Oke Aran Ickore 7 DsS9roii STEC Str2 Oke Aran Ickore 8 13bw STEC Str2 Oke Aran Ickore 9 18aw STEC Str2 Oke Agan Ickore 10 37M STEC AND EFPC Str2 + 66p Ogeoluwatan Ickore 11 4skabi STEC AND EFPC Str2 + 66p Ogeoluwatan Ickore 12 Gew STEC AND EFPC Str2 Ogeoluwatan Ickore 13 7350ml STEC AND EFPC Str2 Ogeoluwatan Ickore 14 7b STEC Str2 Ogeoluwatan Ickore 15 DsStai EFEC AND STEC Str2 Ogeoluwatan Ickore 16 DsStai EFEC AND STEC Str2 Ogeoluwatan Ickore 16 DsStai EFEC AND STEC Str2 Ogeoluwatan Ickore	1	111a	EHEC	Stx2 + Eae	Ayelabola	llode 1
3DatsoiCTEC AND STECS7-202LakerIndex5DAVGCISTECSr22OkestanIlode 16DAVGCISTECSr20Oke AtanIlode 16DAVGCISTECSr20Oke AtanIlode 17DSPSeliSTECSr21Oke AtanIlode 1813bwSTECSr21Oke AtanIlode 2918bwSTECSr24OgolowatanIlode 2103/viSTEC AND IEFECSr24OgolowatanIlode 211G4sbiSTECSr24OgolowatanIlode 213ASSSTECSr24OgolowatanIlode 2147bSTECSr24OgolowatanIlode 215DSSOcSTECSr24Oke OgoloIlode 216DSSOrSTECSr24OgolowatanIlode 216DSSOrSTECSr24OgolowatanIlode 216DSSORSTECSr24OgolowatanIlode 216DSSORSTECSr24OgolowatanIlode 216DSSORSTECSr24OgolowatanIlode 216DSSORSTECSr24OgolowatanIlode 216DSSORSTECSr24MokuroMoore16DSSORSTECSr24MokuroMoore16DSSORSTECSr24MokuroMoore16DSSORSTECSr24Mokuro <td>2</td> <td>92w</td> <td>STEC AND tEPEC</td> <td>Stx2 + Bfp</td> <td>Lokore</td> <td>llode 1</td>	2	92w	STEC AND tEPEC	Stx2 + Bfp	Lokore	llode 1
4DoyASTECSto2Oke AtanIede 15DayGeliSTECSto2Oke AtanIede 17DayGeliSTECSto2Oke AtanIede 17DayGeliSTECSto2Oke AtanIede 17BawSTEC AtanSto2Oke OgboIede 29IsawSTEC AND IEPECSto2Oke OgboIede 210GrishiSTEC AND IEPECSto2Oke OgboIede 211GrishiSTEC AND IEPECSto2OpoluwatanIede 212AewSTEC CSto2OpoluwatanIede 213ZiSomiSTEC AND STECSto2OrgoluwatanIede 214TbSTEC AND STECSto2OrgoluwatanIede 215DaSoSTEC AND STECSto2Ole OgboIede 216DaSoSTEC AND STECSto2Ole OgboIede 217DaSaSTEC AND STECSto2OgoluwatanIede 218DaSoSTEC AND STECSto1OgoluwatanIede 219DaSaSTEC AND STECSto1OgoluwatanIede 210DaSaSTEC AND STECSto1OgoluwatanIede 210DaSaSTEC AND STECSto1OgoluwatanIede 210DaSaSTEC AND STECSto1OgoluwatanIede 211DaSaSTEC AND STECSto1OgoluwatanIede 212DaSaSTEC AND STEC <td< td=""><td>3</td><td>Ds85cii</td><td>ETEC AND STEC</td><td>ST + Stx2</td><td>Lokore</td><td>llode 1</td></td<>	3	Ds85cii	ETEC AND STEC	ST + Stx2	Lokore	llode 1
5DowneinSTECfor2Oke AtanInde 16Ds97dilSTECSr2Oke AtanItode 17Ds99eilSTECSr2Oke AtanItode 28JabwSTEC AND IFECSr1OmboroItode 210JAviSTEC AND IFECSr2Oke OgboItode 21164ssiSTEC AND IFECSr2OgooluwatanItode 2126ewSTEC AND IFECSr2OgooluwatanItode 213JSomiSTEC StatSr2OgooluwatanItode 214/bSTECSr2OgooluwatanItode 215Ds5deSTECSr2Oke OgboItode 216Ds5daSTECSr2Oke OgboItode 217Ds7acSTECSr2Oke OgboItode 218Ds76aiiiSTECSr2Oke OgboItode 219Ds7acSTECSr2OgooluwatanItode 219Ds7aciSTECSr2OgooluwatanItode 221Ds8aaSTECSr2MokuroMoore22ItofSTECSr2MokuroMoore23ItofSTECSr2MokuroMoore24T5STECSr2MokuroMoore25ItofSTECSr2MokuroMoore26109aSTECSr2MokuroMoore27ItofSTECSr2MokuroMoore <td>4</td> <td>Ds94dii</td> <td>STEC</td> <td>Stx2</td> <td>Okeatan</td> <td>llode 1</td>	4	Ds94dii	STEC	Stx2	Okeatan	llode 1
6Do73iSTECSu2Oke AnnIado 17Ds90aiiSTECSu2Oke AnnIado 1813bwSTEC AND IFECSu2OmitotoIado 29IsawSTEC AND IFECSu2 + BpOgeolwatanIado 210AdvishiSTEC AND IFECSu2 + DpOgeolwatanIado 211AdvishiSTEC AND IFECSu2OmitotoIado 212AewSTECSu2OgeolwatanIado 213750rniSTECSu2OmitotoIado 2147bSTECSu2OmitotoIado 215Ds50sSTECSu2OgeolwatanIado 216Ds5aiiSTEC AND STECSu2OgeolwatanIado 217Ds73eIEFE AND STECSu2OgeolwatanIado 218Ds7aiiSTEC AND STECSu2OgeolwatanIado 219Ds7aiSTECSu2OgeolwatanIado 220Ds80aiiSTEC AND STECSu2MakuroMoore21Ds80aiiSTEC AND STECSu2MakuroMoore23115STEC AND STECSu2MakuroMoore24117STEC AND STECSu2MakuroMoore25108aSTEC AND STECSu2MakuroMoore26115STEC AND STECSu2MakuroMoore27116STEC AND STECSu2MokuroMoore2	5	Ds96cii	STEC	Stx2	Oke Atan	llode 1
7Ds99eiiSTECSu2Oke AtanNode 1813bwSTECSu7One OgboNode 2918awSTEC ND StFCSu2 AOke OgboNode 2103xwiSTEC ND StFCSu2 AOke OgboNode 21164sbiSTECSu2Oke OgboNode 2126ewSTECSu2Oke OgboNode 2137350mlSTECSu2OnitotaNode 2147bSTECSu2OgooluwatanNode 215Ds50eSTECSu2OgooluwatanNode 216Ds53aiETEC AND STECSu2OgooluwatanNode 217Ds7aeETEC AND STECSu2OgooluwatanNode 218Ds76aiiSTECSu2OgooluwatanNode 219Ds70aiETEC AND STECSu2OgooluwatanNode 219Ds70aiiSTECSu2OgooluwatanNode 221Ds80aiSTECSu2MokuroMoore22115STECSu2MokuroMoore23117STECSu2MokuroMoore24126STECSu2MokuroMoore25108aSTECSu2MokuroMoore26114STECSu2MokuroMoore27108bSTECSu2MokuroMoore28116STECSu2MokuroMoore <t< td=""><td>6</td><td>Ds97dii</td><td>STEC</td><td>Stx2</td><td>Oke Atan</td><td>llode 1</td></t<>	6	Ds97dii	STEC	Stx2	Oke Atan	llode 1
813bwSTECSrd 1OmitotoIode 2918awSTEC AND tEPECSoc 24 MpOgooluwatanIlode 21164sbiSTEC AND tEPECSoc 24 MpOgooluwatanIlode 2126wSTEC CSoc 2OktoolowatanIlode 213730mlSTEC CSoc 2OmitotoIlode 21470STECSoc 2OmitotoIlode 215Ds50cSTEC CSoc 2OktoolowatanIlode 216Ds53nSTEC CSoc 2OktoolowatanIlode 217Ds73aTEC CSoc 2OgooluwatanIlode 218Ds7sailSTEC CSoc 2OgooluwatanIlode 219Ds7sailSTEC CSoc 1OgooluwatanIlode 220Ds80aTEPC SSoc 1OgooluwatanIlode 221Ds7sailSTEC CSoc 1OgooluwatanIlode 222115TEPC SSoc 1OgooluwatanIlode 223117STEC CSoc 1OlopoluwatanIlode 224115TEPC SSoc 1OlopoluwatanIlode 225108aSTEC CSoc 1OlopoluwatanIlode 226115TEPCSoc 1OlopoluwatanIlode 227115TEPCSoc 1OlopoluwatanIlode 228116STECSoc 1OlopoluwatanIlode 229116STECSoc 1Olopoluw	7	Ds99eii	STEC	Stx2	Oke Atan	llode 1
918awSTECSta2Sta2Oke OgboIlode 21037wiSTEC AND EPECSo2 + B/pOke OgbowatanIlode 2126ewSTECSo2Oke OgboIlode 2137350mlSTECSo2OgoolwatanIlode 2147bSTECSo2OgoolwatanIlode 215Ds50cSTECSo2OgoolwatanIlode 216De53alSTEC AND STECSr2Oke OgboIlode 216Ds53aSTEC AND STECSr4OgoolwatanIlode 217Ds73aiSTEC AND STECSr4OgoolwatanIlode 218Ds73aiiSTEC CSo2OgoolwatanIlode 219Ds73aiiSTECSo2OgoolwatanIlode 210Ds73aiiSTECSo2OgoolwatanIlode 211Ds80aSTECSo2OgoolwatanIlode 222115TEPCSforOgoolwatanIlode 223117STECSo2MokuroMoore24126STECSo2MokuroMoore25Ilode 3STECSo2MokuroMoore26109aSTECSo2MokuroMoore27Ilode 3STECSo2MokuroMoore28114STECSo2MokuroMoore29109aSTECSo2MokuroMoore29109aSTECSo2 <t< td=""><td>8</td><td>13bw</td><td>STEC</td><td>Stx1</td><td>Omitoto</td><td>llode 2</td></t<>	8	13bw	STEC	Stx1	Omitoto	llode 2
1037wiSTEC AND LEPECSto2 + B/pOgoolwatanHode 21164xsbiSTEC5x2OgoolwatanHode 21266wSTEC5x2OgoolwatanHode 2137350 mlSTEC5x2OmitotoHode 2147bSTEC5x2Oke OgboHode 215DsöcSTEC5x2Oke OgboHode 216DsöfaiiETEC AND STECST-5x2Oke OgboHode 217Ds73eiETECSto2OgoolwatanHode 218Ds7saiiSTECSto2OgoolwatanHode 219Ds79aiEECKanOgoolwatanHode 220Ds80aSTECSto1OgoolwatanHode 221Ds80aiSTECSto1OgoolwatanHode 222115TEPCB/pMokuroMoore23117STECSto1OgoolwatanHode 224126STECSto2MokuroMoore25108aSTECSto2MokuroMoore26109aSTECSto2MokuroMoore27109bSTECSto2MokuroMoore28114cSTECSto2MokuroMoore29116aSTECSto2MokuroMoore31123STECSto2MokuroMoore32126STECSto2MokuroMoore33 <t< td=""><td>9</td><td>18aw</td><td>STEC</td><td>Stx2</td><td>Oke Ogbo</td><td>llode 2</td></t<>	9	18aw	STEC	Stx2	Oke Ogbo	llode 2
1164tsbiSTECSta2Ole OgboIlode 2126ewSTECSta2OmitoroIlode 2137350mlSTECSta2OmitoroIlode 2147bSTECSta2OgoluwatanIlode 215Ds50aSTEC AND STECSta2Ole OgboIlode 216Ds5asiETEC AND STECSta2Ole OgboIlode 217Ds73aEFEC AND STECSta2Ole OgboIlode 218Ds73aiETEC AND STECSta2OgoluwatanIlode 219Ds73aiETEC AND STECSta2OgoluwatanIlode 220Ds80atEFECB/pOgoluwatanIlode 221Ds7aiETEC AND STECSta2OgoluwatanIlode 222Ds80aiiTTECSta2MokuroMoore23I15STECSta2MokuroMoore24126STECSta2MokuroMoore25I09aSTECSta2MokuroMoore26119aSTECSta2MokuroMoore27109bSTECSta2MokuroMoore28114cSTECSta2MokuroMoore29115aSTECSta2MokuroMoore30129STECSta2MokuroMoore31126aSTECSta2MokuroMoore32136aSTECSta2Mokuro	10	37wi	STEC AND tEPEC	Stx2 + Bfp	Ogooluwatan	llode 2
126ewSTECSta2OgoduwatanIlode 213735mlSTEC5a2OgoduwatanIlode 2147bSTECSta2OgoduwatanIlode 215Ds50cSTECSta2Oke OgboIlode 216Ds55aiiETEC AND STECST + 5a2OgoduwatanIlode 217Ds73etEPEABfpOmitotoIlode 218Ds75aiiSTECSta2OgoduwatanIlode 219Ds73riETECSta2OgoduwatanIlode 220Ds80aiiSTECSta1OgoduwatanIlode 221Ds80aiiSTECSta1OgoduwatanIlode 222115tEPECBfpMokuroMoore23117STECSta2MokuroMoore24126STECSta2MokuroMoore25108aSTECSta2MokuroMoore26109aETECSta2MokuroMoore27109bSTECSta2MokuroMoore3814cSTECSta2MokuroMoore39116aSTECSta2OpaMokuro31123aSTECSta2OpaMoore32116aSTECSta2OpaMoore33126cSTECSta2OpaMoore3423cwillSTECSta2OpaMoore35AwwETEC	11	64ssbi	STEC	Stx2	Oke Ogbo	llode 2
137350mlSTECStr2OmitotoHode 2147bSTECSr2OpclouwtanHode 215Ds50cSTECSr2Oke OgboHode 216Ds6saiiETEC AND STECSr1 + Str2Oke OgboHode 217Ds73eETEC AND STECSr1 + Str2Oke OgboHode 218Ds76aiiSTECSr2OpoluwatanHode 219Ds79ciEIECIpphOpoluwatanHode 220Ds80aiiSTECStr1OpoluwatanHode 221Ds80aiiSTECStr1OpoluwatanHode 222115STECStr1OpoluwatanHode 223117STECStr2MokuroMoore24166STECStr2MokuroMoore25108aSTECStr2MokuroMoore26109aSTECStr2MokuroMoore27109bSTECStr2MokuroMoore28114cSTECStr2MokuroMoore30119bSTECStr2MokuroMoore31123aSTECStr2MokuroMoore354wETEC AND STECStr2MokuroMoore36Ds12aSTECStr2MokuroMoore37124bSTECStr2MokuroMoore38132aSTECStr2MokuroMoore39 <td>12</td> <td>беw</td> <td>STEC</td> <td>Stx2</td> <td>Ogooluwatan</td> <td>llode 2</td>	12	беw	STEC	Stx2	Ogooluwatan	llode 2
147bSTECStr2OgoluwatanIode 215DsSocSTEC AND STECSrA 2Oke OgboIode 216DsSaiiETEC AND STECSrA 5tozOke OgboIode 217Ds73eEFEC AND STECSrA 2OgoluwatanIode 218Ds7shiiSTEC AND STECkpa 4OgooluwatanIode 219Ds79ciEIECkpa 4OgooluwatanIode 220Ds80aFFECB/pOgooluwatanIode 221Ds80aiiiSTECStx1OgooluwatanIode 222115TECB/pMokuroMoore23117STECStx1OgooluwatanIode 224126STECStx1MokuroMoore25108aSTECStx2MokuroMoore26109aSTECStx2MokuroMoore27109bSTECStx2MokuroMoore28114cSTECStx1MokuroMoore29116aSTECStx2MokuroMoore31123aSTECStx2OpaMoore32126cSTECStx2MokuroMoore34126cSTECStx2MokuroMoore354awTECStx2MokuroMoore36Ds12baSTECStx2MokuroMoore37126cSTECStx4MooreMoore3	13	7350 ml	STEC	Stx2	Omitoto	llode 2
15 Ds50c STEC Sx2 Oke Ogbo Ilode 2 16 Ds53ii ETEC AND STEC ST + Sx2 Oke Ogbo Ilode 2 17 Ds73ei ETEC AND STEC Sr + Sx2 Ogooluwatan Ilode 2 18 Ds76aii STEC Sx2 Ogooluwatan Ilode 2 19 Ds79xi EEC Ipah Ogooluwatan Ilode 2 20 Ds80ai TEPC Bfp Ogooluwatan Ilode 2 21 Ds80aii STEC Sx1 Ogooluwatan Ilode 2 22 11S EEPC Bfp Mokuro Moore 23 117 STEC Sx2 Mokuro Moore 24 126 STEC Sx2 Mokuro Moore 25 Iloda STEC Sx2 Mokuro Moore 26 109a STEC Sx2 Mokuro Moore 27 10bb STEC Sx2 Mokuro Moore </td <td>14</td> <td>7b</td> <td>STEC</td> <td>Stx2</td> <td>Ogooluwatan</td> <td>llode 2</td>	14	7b	STEC	Stx2	Ogooluwatan	llode 2
16 De5Sail ETEC AND STEC ST + 5x2 Oke Ogbo Ilode 2 17 Dx73e tFPC Bip Omitoto Ilode 2 18 Dx76aili STEC Sta Ogooluwatan Ilode 2 19 Dx79ci EIC Ipath Ogooluwatan Ilode 2 20 Dx80a tFPC Bip Ogooluwatan Ilode 2 21 Dx80aili STEC Stx1 Ogooluwatan Ilode 2 22 115 STEC Stx1 Ogooluwatan Ilode 2 23 117 STEC Stx2 Mokuro Moore 24 126 STEC Stx2 Mokuro Moore 25 108a STEC Stx2 Mokuro Moore 26 109a STEC Stx2 Mokuro Moore 27 109b STEC Stx2 Mokuro Moore 30 116a STEC Stx2 Opa Moore <t< td=""><td>15</td><td>Ds50c</td><td>STEC</td><td>Stx2</td><td>Oke Oqbo</td><td>llode 2</td></t<>	15	Ds50c	STEC	Stx2	Oke Oqbo	llode 2
17 Ds73e ttPPC B/p Ornitoto Ilode 2 18 Ds70aii STEC Stz2 Ogooluwatan Ilode 2 19 Ds79ci EIEC Jph Ogooluwatan Ilode 2 20 Ds80a ttPFC B/p Ogooluwatan Ilode 2 21 Ds80aiii STEC Stx1 Ogooluwatan Ilode 2 22 115 ttPFC B/p Mokuro Moore 23 117 STEC Stx1 Olopo Moore 24 126 STEC Stx1 Mokuro Moore 25 108a STEC Stx2 Mokuro Moore 26 109a ETEC Stx1 Mokuro Moore 28 114c STEC Stx2 Mokuro Moore 30 119b STEC Stx2 Opa Moore 31 123a STEC Stx2 Opa Moore 33	16	Ds65aii	ETEC AND STEC	ST + Stx2	Oke Ogbo	llode 2
18Ds7ailiSTECSn2OgooluwatanIlode 219Ds7ociEECIpahOgooluwatanIlode 220Ds80aitEPECB/pOgooluwatanIlode 221Ds80aiiiSTECStx1OgooluwatanIlode 222115tEPECB/pMokuroMoore23117STECStx2MokuroMoore24126STECStx1OlopoMoore25108aSTECStx1MooreMoore26109aETECStx2MokuroMoore27109bSTECStx2MokuroMoore28114cSTECStx2MokuroMoore29116aSTECStx2MokuroMoore30119bSTECStx2MokuroMoore31123aSTECStx2MokuroMoore32124cSTECStx2MokuroMoore33126cSTECStx2MokuroMoore3423cwiiSTECStx2MokuroMoore354awtEPEC AND STECStx2MokuroOpene36D122aSTECStx2MokuroOpene37124cETEC AND STECStx2MooreOpene38125aETEC AND STECStx2MooreOpene39130cETEC AND STECStx1+EaeAyetoroOkereve 144123a	17	Ds73e	tEPEC	Bfp	Omitoto	llode 2
19Ds79c1EECIpahOgooluvatanIlode 220Ds80aEEPCBfpOgooluvatanIlode 221Ds80aiiiSECStx1OgooluvatanIlode 222115EEPCBfpMokuroMoore23117SECStx2MokuroMoore24126STECStx2MokuroMoore25108aSTECStx2MokuroMoore26109aETECStx2MokuroMoore27109bSTECStx2MokuroMoore28114cSTECStx2MokuroMoore29116aSTECStx2OpaMoore31123aSTECStx2OpaMoore32128bSTECStx2OpaMoore33126cSTECStx2OpaMoore3423cwiiSTECStx2OpaMoore354awEFECStx2OpaMoore36Ds122aSTECStx2MokuroMoore37124cEFEC AND STECStx2MokuroOkorewe 13813bEFEC AND STECStx1 + EaeAyetoroOkerewe 139130cEFEC AND STECStx1 + EaeAyetoroOkerewe 144132bEFEC AND STECSt7 + Stx2AyetoroOkerewe 145139bEFEC AND STECSt7 + Stx2AyetoroOkerewe 1<	18	Ds76aiii	STEC	Stx2	Oqooluwatan	llode 2
20 Ds80a tEPEC <i>bf</i> Ogooluwatan Ilode 2 21 Ds80aiii STEC Stx1 Ogooluwatan Ilode 2 22 115 tEPEC <i>Bf</i> Mokuro Moore 23 117 STEC Stx1 Olgooluwatan Moore 24 126 STEC Stx1 Olgoo Moore 25 108a STEC Stx1 Olgoo Moore 26 109a ETEC Stx1 Mokuro Moore 27 109b STEC Stx1 Mokuro Moore 28 114c STEC Stx1 Mokuro Moore 30 119b STEC Stx2 Mokuro Moore 31 123a STEC Stx2 Mokuro Moore 33 126c STEC Stx2 Mokuro Moore 34 23cwii STEC Stx2 Mokuro Moore 35 4w<	19	Ds79ci	EIEC	Ipah	Ogooluwatan	llode 2
21 Ds80aili STEC Str/1 Ogooluwatan Ilode 2 22 115 tEPEC Bfp Mokuro Moore 23 117 STEC Str/2 Mokuro Moore 24 126 STEC Str/1 Olopo Moore 25 108a STEC Str/2 Mokuro Moore 26 109a ETEC Str/2 Mokuro Moore 27 109b STEC Str/2 Mokuro Moore 28 114c STEC Str/2 Mokuro Moore 29 116a STEC Str/2 Mokuro Moore 30 119b STEC Str/2 Mokuro Moore 31 123a STEC Str/2 Opa Moore 31 126c STEC Str/2 Olopo Moore 34 23cwii STEC Str/2 Olopo Moore 36 D122a	20	Ds80a	tEPEC	Bfp	Ogooluwatan	llode 2
22 115 tEPEC B/p Mokuro Moore 23 117 STEC Stx2 Mokuro Moore 24 126 STEC Stx1 Olopo Moore 25 108a STEC Stx1 Mokuro Moore 26 109a ETEC Stx2 Mokuro Moore 27 109b STEC Stx2 Mokuro Moore 28 114c STEC Stx1 Mokuro Moore 29 116a STEC Stx2 Mokuro Moore 30 119b STEC Stx1 Mokuro Moore 31 123a STEC Stx1 Mokuro Moore 33 126c STEC Stx2 Mokuro Moore 34 23cwii STEC Stx2 Mokuro Moore 35 4aw tEPEC Stx2 Mokuro Moore 36 Ds12a STEC </td <td>21</td> <td>Ds80aiii</td> <td>STEC</td> <td>Stx1</td> <td>Ogooluwatan</td> <td>llode 2</td>	21	Ds80aiii	STEC	Stx1	Ogooluwatan	llode 2
23 117 STEC <i>K</i> v2 Mokuro Moore 24 126 STEC <i>Stv1</i> Olopo Moore 25 108a STEC <i>Stv2</i> Mokuro Moore 26 109a ETEC <i>Stv2</i> Mokuro Moore 26 109a STEC <i>Stv2</i> Mokuro Moore 27 109b STEC <i>Stv2</i> Mokuro Moore 28 114c STEC <i>Stv1</i> Mokuro Moore 29 116a STEC <i>Stv2</i> Opa Moore 30 119b STEC <i>Stv2</i> Mokuro Moore 31 123a STEC <i>Stv2</i> Opa Moore 33 126c STEC <i>Stv2</i> Olopo Moore 34 23cwii STEC <i>Stv2</i> Opa Moore 35 4aw tEPEC <i>Stv2</i> Mokuro Moore 36 Ds12a	22	115	tEPEC	Bfp	Mokuro	Moore
24126STECSt/1OlopoMoore25108aSTECSto2MokuroMoore26109aFTECSTMooreMoore27109bSTECSto2MokuroMoore28114cSTECSto2MokuroMoore29116aSTECSto2OpaMoore30119bSTECSto2OpaMoore31123aSTECSto2OpaMoore32126cSTECSto2OpaMoore33126cSTECSto2OpaMoore3423cwiiSTECSto2OpaMoore354awtEPECSto2OpaMoore36Ds122aSTECSto2OpaMoore37124cETECAND STECSto2GbodoOkerewe 139130cHECSto1+Sto2GbodoOkerewe 140131btEPECSto1+AyetoroOkerewe 141132bETECAND STECST+Sto2Oke SodaOkerewe 142138btEPECStpAyetoroOkerewe 143139bETECAND STECSTAyetoroOkerewe 144142aETECSTAyetoroOkerewe 145142diETECAND STECSTAyetoroOkerewe 146143cETECSTAyetoroOkerewe 147154aETEC<	23	117	STEC	Stx2	Mokuro	Moore
25108aSTEC5x2MouroMoore26109aETECSTMooreMoore27109bSTEC5x2MokuroMoore28114cSTECSx1MokuroMoore29116aSTECSx2MokuroMoore30119bSTECSx2OpaMoore31123aSTECSx2MokuroMoore32123bSTECSx2OpaMoore33126cSTECSx2OpaMoore3423cwiiSTECSx2OpaMoore354awEPECStx2OpaMoore36Ds12aaSTECStx2MokuroMoore37124cETEC AND STECStx2MokuroMoore38125aEHECStx1 + EaeAyetoroOkerewe 139130cEHECStx1 + EaeAyetoroOkerewe 141132bETECAND STECSTStx2Oce Okerewe 144142aETECAND STECSTAyetoroOkerewe 143139bETECStx1 + EaeAyetoroOkerewe 144142aETECSTAyetoroOkerewe 145142diiETECSTAyetoroOkerewe 146143cETECStx2AyetoroOkerewe 147154aETEC AND STECSTAyetoroOkerewe 148139bETEC<	24	126	STEC	Stx1	Olopo	Moore
26109aETECSTMooreMoore27109bSTEC $5tc2$ MokuroMoore28114cSTEC $5tc2$ MokuroMoore29116aSTEC $5tc2$ MokuroMoore30119bSTEC $5tc2$ MokuroMoore31123aSTEC $5tc2$ MokuroMoore32123bSTEC $5tc2$ MokuroMoore33126cSTEC $5tc2$ MokuroMoore3423cwiiSTEC $5tc2$ OpaMoore354wwtPEC $8fp$ MooreMoore36D5122aSTEC $5tc2$ MokuroMoore37124cETEC AND STEC $5tc2$ GbodoOkereve 138125aEHEC $5tc2 + fae$ GbodoOkereve 139130cEHEC $5tc1 + fae$ AyetoroOkereve 141132bETEC AND STEC $5T + 5tc2$ Oke SodaOkereve 142138btEPEC bfp AyetoroOkereve 143139bETEC AND STEC $5T + 5tc2$ Oke SodaOkereve 144142aETECSTAyetoroOkereve 145142diETECSTAyetoroOkereve 146143cETECSTAyetoroOkereve 147154aETEC AND STECSTAyetoroOkereve 148164bSTECSTAyetoro	25	108a	STEC	Stx2	Mokuro	Moore
27109bSTEC $5k2$ MokuroMoore28114cSTEC $5k1$ MokuroMoore29116aSTEC $5k2$ MokuroMoore30119bSTEC $5k2$ OpaMoore31123aSTEC $5k2$ MokuroMoore32123bSTEC $5k2$ MokuroMoore33126cSTEC $5k2$ OlopoMoore3423cwiiSTEC $5k2$ OlopoMoore354awtEPEC $8fp$ MooreMoore36Ds122aSTEC $5k2$ MokuroMoore37124cETEC AND STEC $5k2$ GbodoOkereve 138125aEHEC $5k2$ $k2$ MokuroOkereve 141132bETEC AND STEC $5r1$ $k2etor$ Okereve 142138bETEC AND STEC $5r1$ $k2etor$ Okereve 143139bETEC AND STEC $5r1$ $k2etor$ Okereve 144142aETEC AND STEC $5r1$ $k2etor$ Okereve 145142diETEC $5r1$ $Ayetoro$ Okereve 146143cETEC $5r2$ $Ayetoro$ Okereve 147154aETEC $5r2$ $Ayetoro$ Okereve 148154bSTEC $5r2$ $Ayetoro$ Okereve 149 $6yuij$ ETEC AND STEC $5r2$ $Ayetoro$ Okereve 149 $6yuij$ <t< td=""><td>26</td><td>109a</td><td>ETEC</td><td>ST</td><td>Moore</td><td>Moore</td></t<>	26	109a	ETEC	ST	Moore	Moore
28114cSTEC $5tr I$ MokuroMoore29116aSTEC $5tr 2$ MokuroMoore30119bSTEC $5tr 2$ OpaMoore31123aSTEC $5tr 2$ MokuroMoore32123bSTEC $5tr 2$ MokuroMoore33126cSTEC $5tr 2$ OpaMoore3423cwiiSTEC $5tr 2$ OpaMoore354wtEPEC Bfp MooreMoore36Ds122aSTEC $5tr 2$ MokuroMoore37124cETEC AND STEC $5tr 2$ GbodoOkereve 139130cEHEC $5tr 1 + Eae$ AyetoroOkereve 140131btEPEC AND STEC $5T + 5tr 2$ Oka Okereve 141132bETEC AND STEC $5T + 5tr 2$ Oke SodaOkereve 142138btEPEC Bfp AyetoroOkereve 143139bETEC AND STEC $5T + 5tr 2$ Oke SodaOkereve 144142aETEC $5T$ AyetoroOkereve 145142diETEC $5T$ AyetoroOkereve 146143cETEC $5tr 2$ AyetoroOkereve 147154aETEC $5tr 2$ AyetoroOkereve 148154bSTEC $5tr 2$ AyetoroOkereve 1496ywijETECAND STEC $5tr 2$ AyetoroOkereve 1	27	109b	STEC	Stx2	Mokuro	Moore
29116aSTECStx2MokuroMoore30119bSTECStx2OpaMoore31123aSTECStx1MokuroMoore32123bSTECStx2MokuroMoore33126cSTECStx2OpaMoore3423cviiSTECStx2OpaMoore354awtEPECBfpMooreMoore36Ds122aSTECStx2MokuroMoore37124cETEC AND STECStx2MokuroMoore39130cEHECStx1 + Sa2GbodoOkereve 140131btEPECBfpAyetoroOkereve 141132bETEC AND STECStx1 + EaeAyetoroOkereve 143139bETEC AND STECSTAyetoroOkereve 144142aETEC AND STECSTAyetoroOkereve 145138btEPECBfpAyetoroOkereve 146143cETECSTAyetoroOkereve 147154aETECSTOke SodaOkereve 148154bSTECStx2Oke SodaOkereve 1496WijiETEC AND STECStx2AyetoroOkereve 1496WijiETEC AND STECSTAyetoroOkereve 1496WijiETEC AND STECSTAyetoroOkereve 1496WijiETEC AND STECStx2Aye	28	114c	STEC	Stx1	Mokuro	Moore
30119bSTEC $5tx2$ OpaMoore 31 123aSTEC $5tx1$ MokuroMoore 32 123bSTEC $5tx2$ MokuroMoore 33 126cSTEC $5tx2$ OlopoMoore 34 23cwiiSTEC $5tx2$ OpaMoore 35 4awtEPECBfpMooreMoore 36 Ds122aSTEC $5tx2$ MokuroMoore 37 124cETEC AND STEC $5tx2$ MokuroMoore 38 125aEHEC $5tx2 + Eae$ GbodoOkereve 1 39 130cEHEC $5tx1 + Eae$ AyetoroOkereve 1 41 132bETEC AND STEC $5T + 5tx2$ Oke SodaOkereve 1 42 138btEPEC $8fp$ AyetoroOkereve 1 44 142aETEC AND STEC $5T + 5tx2$ Oke SodaOkereve 1 44 142aETEC AND STEC $5T + 5tx2$ Oke SodaOkereve 1 44 142aETEC AND STEC $5T + 5tx2$ Oke SodaOkereve 1 44 142aETEC C $5T + 5tx2$ Oke SodaOkereve 1 45 142diETEC $5T + 5tx2$ AyetoroOkereve 1 46 143cETEC $5T + 5tx2$ AyetoroOkereve 1 47 154aETEC $5tx2$ AyetoroOkereve 1 49 69wijiETECAND STEC $5tx2$ AyetoroOkereve 1 49 69wiji	29	116a	STEC	Stx2	Mokuro	Moore
31 $123a$ STEC $5tr1$ MokuroMoore 32 $123b$ STEC $5tr2$ MokuroMoore 33 $126c$ STEC $5tr2$ OlopoMoore 34 $23cwii$ STEC $5tr2$ OpaMoore 35 $4w$ tEPEC $8fp$ MooreMoore 36 $Ds122a$ STEC $5tr2$ MokuroMoore 37 $124c$ ETEC AND STEC $5tr2$ GbodoOkerewe 1 38 $125a$ EHEC $5tr2 + Eae$ GbodoOkerewe 1 39 $130c$ EHEC $5tr1 + Eae$ AyetoroOkerewe 1 41 $132b$ ETEC AND STEC $5T + 5tr2$ Oke SodaOkerewe 1 41 $132b$ ETEC AND STEC $5T + 5tr2$ Oke SodaOkerewe 1 41 $132b$ ETEC AND STEC $5T + 5tr2$ Oke SodaOkerewe 1 41 $132b$ ETEC AND STEC $5T + 5tr2$ Oke SodaOkerewe 1 42 $138b$ tEPEC $5T + 5tr2$ Oke SodaOkerewe 1 44 $142a$ ETEC AND STEC $5T + 5tr2$ AyetoroOkerewe 1 44 $142a$ ETEC $5T + 5tr2$ AyetoroOkerewe 1 45 $142di$ ETEC $5T + 5tr2$ AyetoroOkerewe 1 46 $143c$ ETEC $5T + 5tr2$ AyetoroOkerewe 1 49 $69wii$ ETECAND STEC $5T + 5tr2$ AyetoroOkerewe 1 49 $69wii$ ETECAND STEC $5T$	30	119b	STEC	Stx2	Ора	Moore
32123bSTEC $5tx2$ MokuroMoore 33 126cSTEC $5tx2$ OlopoMoore 34 23cwiiSTEC $5tx2$ OpaMoore 35 4wtEPEC Bfp MooreMoore 36 Ds122aSTEC $5tx2$ MokuroMoore 37 124cETEC AND STEC $5tx2$ GbodoOkereve 1 38 125aEHEC $5tx2 + Eae$ GbodoOkereve 1 39 130cEHEC $5tx1 + Eae$ AyetoroOkereve 1 40 131btEPEC Bfp AyetoroOkereve 1 41 132bETEC AND STEC $5T + 5tx2$ Oke SodaOkereve 1 41 132bETEC AND STEC $5T + 5tx2$ Oke SodaOkereve 1 41 132bETEC AND STEC $5T - 5tx2$ Oke SodaOkereve 1 42 138btEPEC Bfp AyetoroOkereve 1 44 142aETEC $5T$ AyetoroOkereve 1 45 142diETEC $5T$ AyetoroOkereve 1 46 143cETEC $5tx2$ AyetoroOkereve 1 47 154aEEC pah AyetoroOkereve 1 49 6ywijETEC AND STEC $5tx2$ AyetoroOkereve 1 49 6ywijETEC AND STEC $5tx2$ AyetoroOkereve 1	31	123a	STEC	Stx1	Mokuro	Moore
33126cSTEC $5tx2$ OlopoMoore3423cwiiSTEC $5tx2$ OpaMoore354awtEPEC Bfp MooreMoore36Ds122aSTEC $5tx2$ MokuroMoore37124cETEC AND STEC $5tx2$ GbodoOkerewe 138125aEHEC $5tx2 + Eae$ GbodoOkerewe 139130cEHEC $5tx1 + Eae$ AyetoroOkerewe 140131btEPEC Bfp AyetoroOkerewe 141132bETEC AND STEC $5T + 5tx2$ Oke SodaOkerewe 142138btEPEC Bfp AyetoroOkerewe 143139bETEC C $5T$ AyetoroOkerewe 144142aETEC $5T$ AyetoroOkerewe 145142diETEC $5T$ Oke SodaOkerewe 146143cETEC $5T$ Oke SodaOkerewe 147154aEIEC $5tx2$ AyetoroOkerewe 148154bSTEC $5tx2$ AyetoroOkerewe 1496WiiETECAND STEC $5tx2$ AyetoroOkerewe 1496WiiETECAND STEC $5tx2$ AyetoroOkerewe 1	32	123b	STEC	Stx2	Mokuro	Moore
3423cwiiSTECSta2OpaMoore354awtEPECBfpMooreMoore36Ds122aSTECStx2MokuroMoore37124cETEC AND STECST + Stx2GbodoOkerewe 138125aEHECStx2 + EaeGbodoOkerewe 139130cEHECStx1 + EaeAyetoroOkerewe 140131btEPEC AND STECST + Stx2Oke SodaOkerewe 141132bETEC AND STECST + Stx2Oke SodaOkerewe 142138btEPECBfpAyetoroOkerewe 143139bETEC AND STECSTAyetoroOkerewe 144142aETECSTAyetoroOkerewe 145142diETECSTAyetoroOkerewe 146143cETECSTOke SodaOkerewe 147154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wiiETEC AND STECST+ Stx2AyetoroOkerewe 1	33	1260	STEC	Stx2	Οίορο	Moore
15 16 16 16 16 16 16 16 35 4 awtEPEC Bfp MooreMoore 36 $Ds122a$ $STEC$ $Stx2$ MokuroMoore 37 $124c$ ETEC AND STEC $Stx2 + Stx2$ GbodoOkerewe 1 38 $125a$ EHEC $Stx2 + Eae$ GbodoOkerewe 1 39 $130c$ EHEC $Stx1 + Eae$ AyetoroOkerewe 1 40 $131b$ tEPEC Bfp AyetoroOkerewe 1 41 $132b$ ETEC AND STEC $ST + Stx2$ Oke SodaOkerewe 1 42 $138b$ tEPEC Bfp AyetoroOkerewe 1 43 $139b$ ETEC ST AyetoroOkerewe 1 44 $142a$ ETEC ST AyetoroOkerewe 1 45 $142di$ ETEC ST AyetoroOkerewe 1 46 $143c$ ETEC ST Oke SodaOkerewe 1 47 $154a$ EIEC ST $Okerowe 1$ $Okerewe 1$ 48 $154b$ STEC $Stx2$ $Ayetoro$ $Okerewe 1$ 49 69 69 $ETEC AND STEC$ $ST + Stx2$ $Ayetoro$ $Okerewe 1$	34	23cwii	STEC	Stx2	Ора	Moore
36Ds122aSTEC $5x2$ MokuroMoore 37 124cETEC AND STEC $5T + 5tx2$ GbodoOkerewe 1 38 125aEHEC $5tx2 + Eae$ GbodoOkerewe 1 39 130cEHEC $5tx1 + Eae$ AyetoroOkerewe 1 40 131btEPECBfpAyetoroOkerewe 1 41 132bETEC AND STEC $5T + 5tx2$ Oke SodaOkerewe 1 42 138btEPECBfpAyetoroOkerewe 1 43 139bETEC AND STEC $5T + 5tx2$ Oke SodaOkerewe 1 44 142aETECSTAyetoroOkerewe 1 45 142diETECSTAyetoroOkerewe 1 46 143cETECSTOke SodaOkerewe 1 47 154aEIECIpahAyetoroOkerewe 1 48 154bSTEC $5tx2$ AyetoroOkerewe 1 49 69wijiETEC AND STEC $5T + 5tx2$ OveronOkerewe 1 49 69wijiETEC AND STEC $5T + 5tx2$ AyetoroOkerewe 1	35	4aw	tEPEC	Bfp	Moore	Moore
37124cETEC AND STEC $ST + 5tx2$ GbodoOkerewe 138125aEHEC $Stx2 + Eae$ GbodoOkerewe 139130cEHEC $Stx1 + Eae$ AyetoroOkerewe 140131btEPECBfpAyetoroOkerewe 141132bETEC AND STEC $ST + Stx2$ Oke SodaOkerewe 142138btEPECBfpAyetoroOkerewe 143139bETEC AND STEC $ST + Stx2$ Oke SodaOkerewe 144142aETECSTAyetoroOkerewe 145142diETECSTAyetoroOkerewe 146143cETECSTOke SodaOkerewe 147154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wijiETEC AND STECST + Stx2AyetoroOkerewe 1	36	Ds122a	STEC	Stx2	Mokuro	Moore
38125aEHECStx2 + EaeGbodoOkerewe 139130cEHECStx1 + EaeAyetoroOkerewe 140131btEPECBfpAyetoroOkerewe 141132bETEC AND STECST + Stx2Oke SodaOkerewe 142138btEPECBfpAyetoroOkerewe 143139bETEC CAND STECSTAyetoroOkerewe 144142aETECSTAyetoroOkerewe 145142diETECSTAyetoroOkerewe 146143cETECSTOke SodaOkerewe 147154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wijiETEC AND STECST+ Stx2AyetoroOkerewe 1	37	1240	ETEC AND STEC	ST + Stx2	Gbodo	Okerewe 1
39130cEHECStx 1 + EaeAyetoroOkerewe 140131btEPECBfpAyetoroOkerewe 141132bETEC AND STECST + Stx2Oke SodaOkerewe 142138btEPECBfpAyetoroOkerewe 143139bETEC CAND STECSTAyetoroOkerewe 144142aETECSTAyetoroOkerewe 145142diETECSTAyetoroOkerewe 146143cETECSTOke SodaOkerewe 147154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wijiETEC AND STECST+ Stx2AyetoroOkerewe 1	38	125a	FHEC	Stx2 + Fae	Gbodo	Okerewe 1
40131btEPECBfpAyetoroOkerewe 141132bETEC AND STEC $ST + Stx2$ Oke SodaOkerewe 142138btEPECBfpAyetoroOkerewe 143139bETECSTAyetoroOkerewe 144142aETECSTAyetoroOkerewe 145142diETECSTAyetoroOkerewe 146143cETECSTOke SodaOkerewe 147154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wijiETEC AND STECST+ Stx2AyetoroOkerewe 1	39	130c	FHEC	Stx1 + Fae	Avetoro	Okerewe 1
A1132bETEC AND STECST + Stx2Oke SodaOkerewe 142138btEPECBfpAyetoroOkerewe 143139bETECSTAyetoroOkerewe 144142aETECSTAyetoroOkerewe 145142diETECSTAyetoroOkerewe 146143cETECSTOke SodaOkerewe 147154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wiiETEC AND STECST+ Stx2AyetoroOkerewe 1	40	131b	tEPEC	Bfn	Avetoro	Okerewe 1
111325Effect we street57 + 5x2One soudOne soud42138btEPECBfpAyetoroOkerewe 143139bETECSTAyetoroOkerewe 144142aETECSTAyetoroOkerewe 145142diETECSTAyetoroOkerewe 146143cETECSTOke SodaOkerewe 147154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wijiETEC AND STECST+ Stx2AyetoroOkerewe 1	41	132b	ETEC AND STEC	ST + Stx2	Oke Soda	Okerewe 1
121300ETEC57AyetoroOkrewe 143139bETECSTAyetoroOkrewe 144142aETECSTAyetoroOkrewe 145142diETECLTAyetoroOkrewe 146143cETECSTOkrewe 147154aEIECSTOkrewe 148154bSTECStx2AyetoroOkrewe 14969wiiETEC AND STECST+ Stx2AyetoroOkrewe 1	42	1325 138b	tEPEC	Rfn	Avetoro	Okerewe 1
44142aETECSTAyetoroOkerewe 145142diETECLTAyetoroOkerewe 146143cETECSTOke SodaOkerewe 147154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wijiETEC AND STECST+ Stx2AyetoroOkerewe 1	43	139b	FTFC	ST	Avetoro	Okerewe 1
45142diETECLTAyetoroOkerewe 146143cETECSTOke SodaOkerewe 147154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wiiETEC AND STECST+ Stx2AyetoroOkerewe 1	44	142a	FTFC	ST	Avetoro	Okerewe 1
46143cETECSTOke SodaOkerewe 147154aEIEC <i>Ipah</i> AyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wiiETEC AND STECST+ Stx2AyetoroOkerewe 1	45	142di	FTFC	IT.	Avetoro	Okerewe 1
47154aEIECIpahAyetoroOkerewe 148154bSTECStx2AyetoroOkerewe 14969wiiETEC AND STECST+ Stx2AyetoroOkerewe 1	46	1430	FTFC	ST	Oke Soda	Okerewe 1
48154bSTECStx2AyetoroOkerewe 14969wiiETEC AND STECST + Stx2AvetoroOkerewe 1	47	154a	FIFC	Inah	Avetoro	Okerewe 1
4969wiiETEC AND STECST + Stx2AvetoroOkerewe 1	48	154b	STEC	Stx2	Avetoro	Okerewe 1
	49	69wii	ETEC AND STEC	$ST + Stx^2$	Avetoro	Okerewe 1

Table 5 Number and type of DEC isolated from sampled locations

S/N	Strain number	Pathotype	Genes	Locations	Wards
50	Ss145eii	ETEC	ST	Oke Ayetoro	Okerewe 1
51	142diii	ETEC	ST	Ayetoro	Okerewe 1
52	Ds144ciii	EIEC	Ipah	Oke Ayetoro	Okerewe 1
53	107a	ETEC	ST	Lakanye	Okerewe 2
54	127a	STEC	Stx1	Otutu	Okerewe 2
55	127b	STEC	Stx2	Otutu	Okerewe 2
56	128a	ETEC	ST	Otutu	Okerewe 2
57	128b	tEPEC, ETEC AND STEC	Bfp + St + Stx2	Otutu	Okerewe 2
58	128c	STEC	Stx2	Otutu	Okerewe 2
59	148a	STEC	Stx2	Ajamopo	Okerewe 2
60	150b	STEC	Stx1	Itakogun	Okerewe 2
61	Ds42c	EAEC	Cvd432	Itakogun	Okerewe 2
62	101a	STEC	Stx1	Ogbonya	Okerewe 3
63	101b	EIEC	Ipah	Ogbonya	Okerewe 3
64	102b	tEPEC	Bfp	Ogbonya	Okerewe 3
65	103b	STEC	Stx2	Ogbonya	Okerewe 3
66	105a	ETEC	ST	Ogbonya	Okerewe 3
67	105b	STEC	Stx2	Ogbonya	Okerewe 3
68	152a	STEC	Stx2	Ogbonya	Okerewe 3
69	152b	EPEC, EAEC	Cvd432 + Bfp	Ogbonya	Okerewe 3

Table 5 (continued)

the local government area. Our observation aligns with the reports of previous investigators which observed that drinking water can be a reservoir of DEC in the environment [23, 24]. The prevalence of DEC in our study (39.2%) is relatively higher than that of da Silva et al. [25] (28.1%) and Taomaneso et al. [23] (33.3%), but similar to 48% reported by Ali et al. [4] The prevalence of DEC pathotypes appears to vary according to geographical region probably due to different prevailing risk factors. Largely, the presence of potentially pathogenic *E. coli* in drinking water highlights the potential risk for environmental transmissibility of these strains in different parts of the world.

In order to identify the risk factors associated with the presence of DEC in water in the study environment, we used binomial logistic regression models to test for association. Our analysis revealed a significant association between the presence of DEC and wells that were undercut by erosion, sited near septic tanks and those with dirty platforms. Findings from previous studies have also highlighted these factors to have a significant association with water contamination [26–29]. Siting of septic tanks close to wells could result in leakages or seepages of faecal material into the wells thereby contaminating groundwater. This was evident in a USA study that assessed the seasonal correlation of septic tank distance and well contamination and found a significant connection between decreasing distance and increasing coliform

between septic tanks and wells [30]. Similarly, a review of pit latrines and their impacts on groundwater quality by Graham et al. (2013) concluded that in order to avoid groundwater contamination, latrines and water sources should be at least 50m apart [31]. Also, cracks in the wells can expose wells to polluted storm water and agricultural runoffs. Hence, the knowledge of associated risk factors can provide information that can generate ideas for workable interventions.

We observed that the DEC pathotypes' prevalence varied according to location, probably due to the prevailing associated factors in each location. Okerewe ward 1 had the highest number of wells that were contaminated with DEC, while Okerewe 3 had the least number. Furthermore, multiple DEC pathotypes were recovered from ten wells in the sampled locations. Previous studies in Burkina Faso [32], Bangladesh [33] and Brazil [34] have reported similar findings, implying multiple sources of contamination of the wells.

All the five pathotypes of DEC that we sought were identified with a preponderance of STEC. The occurrence of STEC in drinking water has been reported globally [34, 35]; along with outbreaks of waterborne disease caused by this pathotype [36, 37]. STEC are public health concerns due to their ability to cause anaemia, uraemia and kidney failure, especially in young children. Our observation is in tandem with previous studies that had detected STEC in drinking water [35, 38]. Our prevalence

 Table 6
 Univariate analysis of risk factors for contamination with DEC

Characteristics	No (<i>N</i> = 87)	Yes (<i>N</i> = 56)	Total (<i>N</i> = 143)	<i>p</i> -value
Wards				0.183 ^a
llode 1	11.0 (12.6%)	7.0 (12.5%)	18.0 (12.6%)	
llode 2	37.0 (42.5%)	12.0 (21.4%)	49.0 (34.3%)	
Moore	13.0 (14.9%)	12.0 (21.4%)	25.0 (17.5%)	
Okerewe 1	16.0 (18.4%)	15.0 (26.8%)	31.0 (21.7%)	
Okerewe 2	4.0 (4.6%)	5.0 (8.9%)	9.0 (6.3%)	
Okerewe 3	6.0 (6.9%)	5.0 (8.9%)	11.0 (7.7%)	
Age of well owners (Mean \pm SD: vears)	44.3 ± 16.3	48.1 ± 17.9	45.8 ± 17	0.200 ^b
Number of vears in resisdence (Mean \pm SD; vears)	16.58 ± 18.6	12.7 ± 14.8	14.2 ± 16.4	0.168 ^b
Age of wells (Mean \pm SD: years)	25.4 ± 20.2	17.5 ± 22.2	20.6 ± 21.7	0.033 ^b
Depth of wells (Mean \pm SD: Feet)	258 ± 195	315 ± 235	293 ± 221	0.128 ^b
Well undercut by erosion	2010 - 1010	51.5 225.5		0.018 ^a
No	76.0 (87.4%)	40.0 (71.4%)	116.0 (81.1%)	0.010
Ves	11.0 (12.6%)	16.0 (28.6%)	27.0 (18.9%)	
Gender	11.0 (12.070)	10.0 (20.070)	27.0 (10.270)	0.053a
Female	70.0 (80.5%)	37.0 (66.1%)	1070 (74.8%)	0.000
Male	17.0 (10.5%)	10.0 (33.0%)	36.0 (25.2%)	
Paliaian	17.0 (19.5%)	19.0 (33.970)	JU.U (ZJ.Z70)	0 6 2 1 8
Christianity	60.0 (00.20%)	420 (76 404)	1110(70,70/)	0.021
Leismannty Islam	14.0 (16.2%)	42.0 (70.4%)	77.0 (78.7%)	
Islam Tua distana liat	14.0 (10.5%)	12.0 (21.0%)	20.0 (16.4%)	
Iraditionalist	3.0 (3.5%)	1.0 (1.8%)	4.0 (2.8%)	0.22.43
Level of education	160 (20 50()	0.0 (1.6 70())	24.0 (10.00()	0.334°
Primary	16.0 (20.5%)	8.0 (16.7%)	24.0 (19.0%)	
Secondary	35.0 (44.9%)	28.0 (58.3%)	63.0 (50.0%)	
Tertiary	27.0 (34.6%)	12.0 (25.0%)	39.0 (31.0%)	3
Covered				0.22/*
Covered	/0.0 (80.5%)	38.0 (67.9%)	108.0 (75.5%)	
Open	7.0 (8.0%)	8.0 (14.3%)	15.0 (10.5%)	
Partially covered	10.0 (11.5%)	10.0 (17.9%)	20.0 (14.0%)	
Presence of septic tank				0.005 ^a
No	64.0 (76.2%)	30.0 (53.6%)	94.0 (67.1%)	
Yes	20.0 (23.8%)	26.0 (46.4%)	46.0 (32.9%)	
Keeping of pets				0.035 ^a
No	64.0 (76.2%)	32.0 (59.3%)	96.0 (69.6%)	
Yes	20.0 (23.8%)	22.0 (40.7%)	42.0 (30.4%)	
Proximity of livestock to well				0.265 ^a
No	65.0 (74.7%)	37.0 (66.1%)	102.0 (71.3%)	
Yes	22.0 (25.3%)	19.0 (33.9%)	41.0 (28.7%)	
Proximity of waste dump site to well				0.578 ^a
No	84.0 (96.6%)	53.0 (94.6%)	137.0 (95.8%)	
Yes	3.0 (3.4%)	3.0 (5.4%)	6.0 (4.2%)	
Proximity of well to farm				0.198 ^a
No	79.0 (90.8%)	54.0 (96.4%)	133.0 (93.0%)	
Yes	8.0 (9.2%)	2.0 (3.6%)	10.0 (7.0%)	
Residence type				0.012 ^a
Flat	45.0 (51.7%)	17.0 (30.4%)	62.0 (43.4%)	
Tenement	42.0 (48.3%)	39.0 (69.6%)	81.0 (56.6%)	
Occupation				0.131 ^a
Artisan	60.0 (69.0%)	40.0 (71.4%)	100.0 (69.9%)	

Table 6 (continued)

Characteristics	No (<i>N</i> = 87)	Yes (<i>N</i> = 56)	Total (<i>N</i> = 143)	<i>p</i> -value
Civil servant	18.0 (20.7%)	10.0 (17.9%)	28.0 (19.6%)	
Religious leader	2.0 (2.3%)	3.0 (5.4%)	5.0 (3.5%)	
Student	6.0 (6.9%)	0.0 (0.0%)	6.0 (4.2%)	
Unemployed	1.0 (1.1%)	3.0 (5.4%)	4.0 (2.8%)	
Dirty platform				< 0.001 ^a
No	72.0 (82.8%)	32.0 (57.1%)	104.0 (72.7%)	
Yes	15.0 (17.2%)	24.0 (42.9%)	39.0 (27.3%)	
Hospitalization in last year				0.542 ^a
No	67.0 (83.8%)	43.0 (79.6%)	110.0 (82.1%)	
Yes	13.0 (16.2%)	11.0 (20.4%)	24.0 (17.9%)	
Marital status				0.045 ^a
Married	75.0 (86.2%)	54.0 (96.4%)	129.0 (90.2%)	
Single	12.0 (13.8%)	2.0 (3.6%)	14.0 (9.8%)	

^a Pearson chi-square test; ^bStudent t test

Table 7	Multivariate Logistic regression models of DEC in the assessed wells

Predictor			Odds ratio	Lower	Upper	P-value
Well undercut by erosion	Yes	16.0 (28.6%)				
	No	11.0 (12.6%)	2.616	1.019	6.716	0.046
Presence of septic tank	Yes	26.0 (46.4%)				
	No	20.0 (23.8%)	2.611	1.131	6.027	0.025
Dirty platform	Yes	24.0 (42.9%)				
	No	15.0 (17.2%)	3.125	1.232	7.924	0.016
Keeping of pets	Yes	22.0 (40.7%)				
	No	20.0 (23.8%)	0.884	0.335	2.329	0.803
Residence type	Tenement	39.0 (69.6%)				
	Flat	42.0 (48.3%)	1.115	0.418	2.977	0.828

is higher than that of Elmonir et al. [24] in Egypt (33.3%). In contrast, none of the *E. coli* isolates from water samples in France was STEC [39]. Interestingly, our previous study on the prevalence of DEC in diarrheic children in this environment also showed a preponderance of STEC amongst other pathotypes that were identified [15]. Therefore, this study indicates that STEC is prevalent in this environment and water could be a reservoir.

Most of our STEC harboured stx2 which is strongly associated with haemorrhagic colitis and haemolytic uraemic syndrome in humans. Even though eae is a significant determinant of virulence in STEC infection, most of the stx2 -positive isolates did not have it, apart from three isolates that harboured *eae* with stx2 and stx_1 . While considering the reported health risk attributable to STEC, the detection of eae-negative STEC strains in our study could be a public health concern as outbreaks of bloody diarrhoea and hemolytic-uremic syndrome (HUS) caused by STEC strains without the eae gene have been reported, which suggests that Shiga toxin is the primary virulence trait responsible for HUS [34, 36]. Besides, the *stx2* gene has been documented to be more strongly associated with severe disease in humans than the *stx1*, thus, signifying its importance in human infection.

ETEC, EAEC, EPEC have been linked with waterborne outbreaks of gastroenteritis. In our study, ETEC was second to STEC in terms of prevalence. Kambire et al. [40] found that 90% of *E. coli* isolated from water were ETEC which differs from the prevalence of 14.5% we got in our study, but higher than Rodrigues da Silva et al. [25] that reported less than 1%. EAEC strains have been linked with outbreaks of gastroenteritis in South Korea due to consumption of contaminated groundwater [36]. In this study, EAEC was the least prevalent pathotype. Also, a study conducted in South Africa, showed that only EAEC was found of all the DEC strains sought [41]. The EPEC strains are of two types; atypical EPEC (aEPEC) and typical EPEC (tEPEC). Humans are the only reservoir for tEPEC, which is spread by inter-human contact. Canizalez-Roman et al. [42] and Sidhu et al. [43] detected tEPEC in food and surface water respectively. The detection of only tEPEC in our study suggests that the wells were contaminated by humans. Also, the detection of EPEC as the third most prevalent pathotypes in our study shows that contaminated water can be a source of infection by this pathotype in humans.

EIEC is an important *E. coli* pathotype that causes watery diarrhoea and dysentery similar to *Shigella* in terms of pathogenesis. In this study, EIEC was detected in four (5.8%) DEC isolates. Compared with our findings, higher prevalence rates of EIEC have been reported from China (9.1%) [44] and Sudan (41.3%) [45] probably due to geographical differences.

Moreover, our results showed two and three combinations of diarrhoeagenic genes of different *E. coli* pathotypes isolated from some water samples: STEC and tEPEC (N=2/56) (3.6%), ETEC and STEC (N=5/56) (8.9%), tEPEC, ETEC and STEC (1/56)(1.8%), EAEC and tEPEC (1/56) (1.8%). Remarkably, this is the first study to report these combinations in waterborne DEC isolates. Other studies reported a different combination of genes from both EAEC and EHEC [43, 46]. This finding is of a public health concern as mixed infections usually involve more dehydration compared with episodes caused by a single DEC pathotype.

There have been reports on the prevalence of DEC pathotypes in healthy and diseased individuals from Nigeria; however, there is a paucity of waterborne DEC studies that reveal the relatedness of isolates according to their sources of isolation. Therefore, to determine the degree of diversity among DEC pathotypes, all isolates were subjected to (GTG)5 rep-PCR typing, a genotypic technique for the detection of diversity. In our study, complex fingerprint patterns were obtained for all DEC isolates. In addition, all the DEC isolates clustered together with six clades of strains observed. Generally, we obtained a diverse profile among and between the isolates recovered from different sources. The highly adaptive nature of *E. coli* with a short generation time interval as well as easy acquisition of mobile genetic elements under selection pressure provides a greater degree of genetic diversity among E. coli strains. The extensive diversity among the DEC strains isolated from different sources largely rules out between/within location transmissibility of isolates. Likewise, several independent studies have reported the existence of diverse populations of *E. coli* in several hosts and environments [5, 47]. Clade 5 had the highest number of strains (12/50; 24%), while clade 3 had the least number (3/50; 6%). Four STEC isolates from different locations and wards in the local government in Clade 5 were identical. This implies that these isolates have either been maintained or circulated within a similar source of origin. Our isolates were highly diverse as indicated by the Shannon diversity index (H = 18.87). The diversity of isolates implies multiple sources of contamination at the locations.

Conclusions

This study reports a high prevalence of DEC in well water with a preponderance of STEC. The presence of these pathogenic strains of *E. coli* in drinking water highlights the risk to human health associated with the use of untreated water. There was a high degree of genetic diversity among the isolates implying multiple sources of contamination thus emphasizing the need for periodic sanitation and inspection of wells for cracks to prevent seepages, runoff and possible outbreaks of waterborne diseases. Also, there is a need to sensitise well owners and consumers to inculcate the habit of boiling untreated

water before use. Regulatory agencies in charge of well construction and water quality must take the appropriate measures to ensure proper well siting, construction, and maintenance to prevent contamination.

Abbreviations

DEC: Diarrhoeagenic *Escherichia coli*; EPEC: Enteropathogenic *Escherichia coli*; EHEC: Enterohaemorrhagic *Escherichia coli*; EIEC: Enteroinvasive *Escherichia coli*; ETEC: Enterotoxigenic *Escherichia coli*; STEC: Shiga toxin producing *Escherichia coli*; MPN: Most probable number; ATCC: American type culture collection.

Acknowledgments

We are grateful to the health workers of Osun state primary health centres lle-lfe, Nigeria for their support.

Authors' contributions

BO conceived the study, wrote the first draft of the manuscript and performed the experiments regarding the molecular characteristics of the isolates. OO collected the data and performed the experiments regarding the phenotypic characteristics of the isolates. AO interpreted the socio demographic data of participants, and was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Funding

None.

Availability of data and materials

All data and materials of this study are included. If additional information is needed, please contact the author for requests.

Declarations

Ethics approval and consent to participate

This study approval was obtained from the Health Research Ethics Committee (HREC), Institute of Public Health, Obafemi Awolowo University, Ile-Ife, Nigeria (HREC No: IPHOAU/12/863). There is no participation section for this study as it is not applicable.

Consent for publication

None. This manuscript does not contain any individual person's data.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria. ²Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Maiduguri, Maiduguri, Borno State, Nigeria.

Received: 22 July 2021 Accepted: 28 October 2021 Published online: 08 February 2022

References

- World Health Organization. Diarrhoeal disease: Factsheet. World Health Organization: WHO; 2017. https://www.who.int/news-room/fact-sheets/ detail/diarrhoeal-disease
- Peter AK, Uzal U. Combating diarrhoea in Nigeria: the way forward. J Micro Experiment. 2018;6(Issue 4) 10/ghs5ch.
- Invik J, Barkema HW, Massolo A, Neumann NF, Checkley S. Total coliform and Escherichia coli contamination in rural well water: analysis for passive surveillance. J Water Health. 2017;15:729–40.
- Ali MMM, Mohamed ZK, Klena JD, Ahmed SF, Moussa TAA, Ghenghesh KS. Molecular characterization of diarrheagenic Escherichia coli from Libya. Am J Trop Med Hyg. 2012;86:866–71.

- Healy-Profitós J, Lee S, Mouhaman A, Garabed R, Moritz M, Piperata B, et al. Neighborhood diversity of potentially pathogenic bacteria in drinking water from the city of Maroua, Cameroon. J Water Health. 2016;14:559–70.
- García-Aljaro C, Blanch AR, Campos C, Jofre J, Lucena F. Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. J Appl Microbiol. 2019;126(3):701–17.
- Oyedeji O, Olutiola PO, Owolabi KD, Adeojo KA. Multiresistant faecal indicator bacteria in stream and well waters of Ile-Ife City, southwestern Nigeria: public health implications. J Public Health Epidemiol. 2011;3:371–81.
- Adejuwon AO, Bisi-Johnson MA, Agboola OA, Fadeyi BO, Adejuwon AO. Antibiotics sensitivity patterns of Escherichia coli and Aerobacter aerogenes isolated from well water in Ile– Ife, Nigeria. Int J Med Med Sci. 2011;3:155–60.
- Maran NH, Crispim B, do A, lahnn SR, Araújo RP de, Grisolia AB, Oliveira KMP de. Depth and well type related to groundwater microbiological contamination. Int J Environ Res Public Health. 2016;13. https://doi.org/ 10.3390/ijerph13101036.
- 10. Fenwick A. Waterborne Infectious Diseases–Could They Be Consigned to History? Science. 2006;313:1077–81.
- National Population Commission. Population distribution by sex state lgas and senatorial district 2006 census priority tables, vol. 3; 2006. http:// www.population.gov.ng/index.php/publications/140-population-distr ibution-by-sex-state-lgas-and-senatorial-district-2006-census-prioritytables-vol-3. Accessed 30 May 2020
- Sullivan KM, Soe MM. Sample size for a cross-sectional, cohort, or clinical trial Studies. 2007. https://www.openepi.com/PDFDocs/SSCCDoc.pdf.
- Cheesbrough M. District laboratory practice in tropical countries part II. CambridgeUniversity Press Pp. 2006;113:319–29.
- 14. Hajna AA, Perry CA. A comparison of the Eijkman test with other tests for determining Escherichia coli in sewage. J Bacteriol. 1935;30:479–84.
- Odetoyin BW, Hofmann J, Aboderin AO, Okeke IN. Diarrhoeagenic Escherichia coli in mother-child pairs in Ile-Ife, South Western Nigeria. BMC Infect Dis. 2015;16 10/gffcnf.
- Hassan J, Parvej MS, Rahman MB, Khan MSR, Rahman MT, Kamal T, et al. Prevalence and characterization of Escherichia coli from rectal swab of apparently healthy cattle in Mymensingh, Bangladesh. Microbes Health. 2014;3:12–4.
- Aranda KRS, Fagundes-Neto U, Scaletsky ICA. Evaluation of multiplex PCRs for diagnosis of infection with Diarrheagenic Escherichia coli and Shigella spp. J Clin Microbiol. 2004;42:5849–53.
- Mohapatra BR, Broersma K, Mazumder A. Differentiation of fecal Escherichia coli from poultry and free-living birds by (GTG)5-PCR genomic fingerprinting. Int J Med Microbiol. 2008;298:245–52.
- Heras J, Domínguez C, Mata E, Pascual V, Lozano C, Torres C, et al. GelJ

 a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics.
 2015;16:270.
- Hammer Ø, Harper DAT, Ryan PD. Past: paleontological statistics software package for education and data analysis. Palaeontolog Assoc. 2014; https://palaeo-electronica.org/2001_1/past/issue1_01.htm.
- Byappanahalli MN, Whitman RL, Shively DA, Ferguson J, Ishii S, Sadowsky MJ. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan. Water Res. 2007;41:3649–54.
- 22. R Core Team. R: A language and environment for statistical computing. 2019. https://www.R-project.org/.
- Taonameso S, Mudau LS, Traoré AN, Potgieter N. Borehole water: a potential health risk to rural communities in South Africa. Water Supply. 2019;19:128–36.
- 24. Elmonir W, Abo Remela EM, Alwakil Y. Diversity, virulence and antibiogram traits of Escherichia coli recovered from potable water sources in Gharbia, Egypt. J Water Health. 2020;18:430–8.
- da Silva CR, Sanches MS, Macedo KH, Dambrozio AML, da Rocha SPD, Navarro A, et al. Molecular and phenotypic characterization of diarrheagenic Escherichia coli isolated from groundwater in rural areas in southern Brazil. J Water Health. 2019;17:597–608.
- Raji MIO, Ibrahim YKE. Prevalence of waterborne infections in Northwest Nigeria: A retrospective study. J Public Health Epidemiol. 2011;38:382–5.
- 27. Sedhain P. Water, sanitation, socioeconomic status and prevalence of waterborne diseases: a cross-sectional study at Makwanpur district,

Nepal: UiT Norges arktiske universitet; 2014. https://munin.uit.no/handle/ 10037/6503

- Oguntoke O, Aboderin OJ, Bankole AM. Association of water-borne diseases morbidity pattern and water quality in parts of Ibadan City, Nigeria. Tanzan J Hlth Res. 2010;11. https://doi.org/10.4314/thrb.v11i4.50174.
- 29. Qureshi AS. Water management in the indus basin in Pakistan: challenges and opportunities. Mt Res Dev. 2011;31:252–60.
- Schaider LA, Ackerman JM, Rudel RA. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer. Sci Total Environ. 2016;547:470–81.
- Graham JP, Polizzotto ML. Pit latrines and their impacts on groundwater quality: A systematic review. Environ Health Perspect. 2013;121:521–30.
- Bonkoungou IJO, Somda NS, Traoré O, Zoma BS, Garba Z, Drabo KM, et al. Detection of Diarrheagenic Escherichia coli in human diarrheic stool and drinking water samples in Ouagadougou, Burkina. Faso AJID. 2021;15:53–8.
- 33. Talukdar PK, Rahman M, Rahman M, Nabi A, Islam Z, Hoque MM, et al. Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. PLoS One. 2013;8:e61090.
- Lascowski KMS, Guth BEC, Martins FH, Rocha SPD, Irino K, Pelayo JS. Shiga toxin-producing Escherichia coli in drinking water supplies of North Paraná state, Brazil. J Appl Microbiol. 2013;114:1230–9.
- Crespo-Medina M, Greaves I, Hunter PR, Minnigh H, Ramírez-Toro G. Detection of Shiga toxin-encoding genes in small community water supplies. J Water Health. 2020;18:937–45.
- Park J, Kim JS, Kim S, Shin E, Oh K-H, Kim Y, et al. A waterborne outbreak of multiple diarrhoeagenic Escherichia coli infections associated with drinking water at a school camp. Int J Infect Dis. 2018;66:45–50.
- Schack RM, Handby M, Gregory J, Subasinghe N, Coutts SP. A fatal case of Shiga toxin-producing Escherichia coli linked to a private drinking water supply. Commun Dis Intell. 2020;44. https://doi.org/10.33321/cdi.2020.44.89.
- Shojaei M. Virulence factors of Shiga-toxigenic Escherichia coli in drinking water of Shahrekord, Iran. Iran Electronic J Biol. 2017;13:4.
- Madec J-Y, Haenni M, Ponsin C, Kieffer N, Rion E, Gassilloud B. Sequence type 48 escherichia coli carrying the blaCTX-M-1 Incl1/ST3 plasmid in drinking water in France. Antimicrob Agents Chemother. 2016;60:6430–2.
- Kambire O, Adingra AA, Yao KM, Koffi-Nevry R. Prevalence of virulence genes associated with Diarrheagenic Pathotypes of *Escherichia coli* isolates from water, sediment, fish, and crab in aby lagoon, Côte d'Ivoire. Int J Microbiol. 2017;2017:1–8.
- Navab-Daneshmand T, Friedrich MND, Gächter M, Montealegre MC, Mlambo LS, Nhiwatiwa T, et al. Escherichia coli contamination across multiple environmental compartments (soil, hands, drinking water, and handwashing water) in urban Harare: correlations and risk factors. Am J Trop Med Hyg. 2018;98:803–13.
- Canizalez-Roman A, Gonzalez-Nuñez E, Vidal JE, Flores-Villaseñor H, León-Sicairos N. Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int J Food Microbiol. 2013;164:36–45.
- Sidhu JPS, Ahmed W, Hodgers L, Toze S. Occurrence of virulence genes associated with Diarrheagenic Pathotypes in Escherichia coli isolates from surface water. Appl Environ Microbiol. 2013;79:328–35.
- Huang S-W, Hsu B-M, Su Y-J, Ji D-D, Lin W-C, Chen J-L, et al. Occurrence of diarrheagenic Escherichia coli genes in raw water of water treatment plants. Environ Sci Pollut Res Int. 2011;19:2776–83.
- Moglad EH, Jalil Adam OAE, Alnosh MM, Altayb HN. Detection of virulence genes of diarrheagenic Escherichia coli strains from drinking water in Khartoum state. J Water Health. 2020. https://doi.org/10.2166/wh.2020.097.
- Trung NV, Nhung HN, Carrique-Mas JJ, Mai HH, Tuyen HT, Campbell J, et al. Colonization of Enteroaggregative Escherichia coli and Shiga toxinproducing Escherichia coli in chickens and humans in southern Vietnam. BMC Microbiol. 2016;16:208.
- 47. Paulshus E, Kühn I, Möllby R, Colque P, O'Sullivan K, Midtvedt T, et al. Diversity and antibiotic resistance among Escherichia coli populations in hospital and community wastewater compared to wastewater at the receiving urban treatment plant. Water Res. 2019;161:232–41.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.